Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Language
Publication year range
1.
Article in Chinese | WPRIM | ID: wpr-940124

ABSTRACT

ObjectiveTo investigate the targets and mechanism of Baofeikang granules in the treatment of pulmonary fibrosis based on network pharmacology and verify the predicted mechanism based on animal experiment. MethodThe active ingredients and targets of Baofeikang granules were screened via the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the targets of pulmonary fibrosis were searched in various disease databases. The common targets shared by Baofeikang granules and the disease were extracted for the establishment of the protein-protein interaction (PPI) network in STRING. Cytoscape 3.8.0 was used to analyze the network topology of the key targets and to establish the ''active ingredient-target'' network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the core targets to explore their possible molecular mechanisms. The rats were assigned into four groups: normal group, model group, prednisone acetate group, and Baofeikang granules group. The rat model of interstitial lung fibrosis was established by tracheal instillation of bleomycin. After 21 days of gavage, the lung tissues of rats were stained with hemotoxylin and eosin (HE) for the observation of morphological changes, and phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were detected via immunohistochemical (IHC) staining. ResultBased on network pharmacology, 18 key targets of Baofeikang granules were identified for the treatment of pulmonary interstitial fibrosis, including Akt1, mitogen-activated protein kinase (MAPK) 1, myelocytomatosis oncogene (MYC), hypoxia-inducible factor-1α (HIF-1α), cyclin-dependent kinase inhibitor 1A (CDKN1A), epidermal growth factor receptor (EGFR), and Runt-related transcription factor (RUNX2). KEGG pathway enrichment predicted that Baofeikang granules exerted anti-fibrotic effect mainly through PI3K/Akt, tumor necrosis factor (TNF), and interleukin-17 (IL-17) signaling pathways. The IHC results in animal experiment showed that the protein levels of PI3K and Akt were lower in the Baofeikang granules group than in the model group (P<0.05, P<0.01). ConclusionBaofeikang granules has low toxicity, multiple targets, and multiple pathways in the treatment of pulmonary fibrosis. It may alleviate pulmonary fibrosis through regulating PI3K/Akt signaling pathway, so as to improve the lung function.

2.
Article in Chinese | WPRIM | ID: wpr-940221

ABSTRACT

ObjectiveTo investigate the targets and mechanism of Baofeikang granules in the treatment of pulmonary fibrosis based on network pharmacology and verify the predicted mechanism based on animal experiment. MethodThe active ingredients and targets of Baofeikang granules were screened via the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the targets of pulmonary fibrosis were searched in various disease databases. The common targets shared by Baofeikang granules and the disease were extracted for the establishment of the protein-protein interaction (PPI) network in STRING. Cytoscape 3.8.0 was used to analyze the network topology of the key targets and to establish the ''active ingredient-target'' network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the core targets to explore their possible molecular mechanisms. The rats were assigned into four groups: normal group, model group, prednisone acetate group, and Baofeikang granules group. The rat model of interstitial lung fibrosis was established by tracheal instillation of bleomycin. After 21 days of gavage, the lung tissues of rats were stained with hemotoxylin and eosin (HE) for the observation of morphological changes, and phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were detected via immunohistochemical (IHC) staining. ResultBased on network pharmacology, 18 key targets of Baofeikang granules were identified for the treatment of pulmonary interstitial fibrosis, including Akt1, mitogen-activated protein kinase (MAPK) 1, myelocytomatosis oncogene (MYC), hypoxia-inducible factor-1α (HIF-1α), cyclin-dependent kinase inhibitor 1A (CDKN1A), epidermal growth factor receptor (EGFR), and Runt-related transcription factor (RUNX2). KEGG pathway enrichment predicted that Baofeikang granules exerted anti-fibrotic effect mainly through PI3K/Akt, tumor necrosis factor (TNF), and interleukin-17 (IL-17) signaling pathways. The IHC results in animal experiment showed that the protein levels of PI3K and Akt were lower in the Baofeikang granules group than in the model group (P<0.05, P<0.01). ConclusionBaofeikang granules has low toxicity, multiple targets, and multiple pathways in the treatment of pulmonary fibrosis. It may alleviate pulmonary fibrosis through regulating PI3K/Akt signaling pathway, so as to improve the lung function.

3.
Article in Chinese | WPRIM | ID: wpr-940364

ABSTRACT

ObjectiveTo explore the underlying molecular mechanism of Xiaochuanning granules in the treatment of bronchial asthma based on the network pharmacology and experimental verification through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway on ovalbumin (OVA) sensitization-induced bronchial asthma model in rats. MethodThe main active ingredients and targets of Xiaochuanning Granules were screened out from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). The targets related to bronchial asthma were obtained from five disease databases such as GeneCards and Online Mendelian Inheritance in Man (OMIM). The common targets were screened out through the Venn diagram. STRING was used to construct the protein-protein interaction (PPI) network of "compound-disease", and Cytoscape 3.8.0 was used to establish a network of key active ingredients of Xiaochuanning granules and core target genes ("ingredient-gene" network). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed through DAVID. The bronchial asthma model was induced by OVA stimulation in rats. Bronchial and lung tissue inflammation was observed by hematoxylin-eosin (HE) staining, and the enrichment analysis results of the network pharmacology were verified by Western blot. ResultIn this experiment, 232 active ingredients and 4 687 related targets of Xiaochuanning granules were screened out, and 233 common targets of Xiaochuanning granules and bronchial asthma were collected, including eosinophil-derived neurotoxin 1 (EDN1), cyclic AMP response element-binding protein 1 (CREB1), cyclin-dependent kinase inhibitor 1A (CDKN1A), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 14 (MAPK14), and Akt1. KEGG pathway analysis revealed 186 related signaling pathways, indicating that the PI3K/Akt signaling pathway presumedly played a key role in the treatment of bronchial asthma by Xiaochuanning granules. The animal experiment showed that Xiaochuanning granules relieved the airway inflammation and smooth muscle hyperplasia in rats and down-regulated the gene expression of PI3K and Akt as compared with the conditions in the model group (P<0.05). ConclusionXiaochuanning granules have the characteristics of multi-component, multi-target, and multi-pathway synergistic effect in the treatment of asthma. Xiaochuanning granules may exert anti-inflammatory effects by regulating the expression of genes related to the PI3K/Akt signaling pathway. The present study is expected to provide a theoretical basis for follow-up in-depth research on the complex mechanism of Xiaochuanning granules in the treatment of bronchial asthma.

4.
Article in Chinese | WPRIM | ID: wpr-940586

ABSTRACT

ObjectiveTo observe the therapeutic effect and antioxidant mechanism of Xiaochuanning granule on psychological stress-related asthma in rats. MethodThe 6-week-old male SD rats were randomly divided into the normal group, asthma group, stress group, stress-related asthma group, western medicine group (atomization of budesonide suspension) and traditional Chinese medicine (TCM) group (Xiaochuanning granule 2.48 g·kg-1). The asthma model was established during 28 days by intraperitoneal injection of 10% ovalbumin(OVA)on the 1st and 8th days and inhaling of vapourized 1% OVA started at the 15th day. Stress group, stress-related asthma group, western medicine group and TCM group were given restraint stimulation during the 28 days to establish the psychological stress-related asthma model. Rats in each group were administered with corresponding drug for 14 days from the 15th day. The sucrose preference test and open field test were performed at the 15th and 28th days. At the end of experiment, the body weight, serum interleukin-4 (IL-4), interleukin-5 (IL-5) and interleukin-13 (IL-13) levels, as well as the levels of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) in lung tissues were detected by assay kits. Hematoxylin-eosin(HE) staining was conducted to observe the pathological changes in lung tissues. Meanwhile, Western blot was used to detect the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) in lung tissues. ResultCompared with the stress-related asthma group, the body weight, sugar water consumption rate and open field distance in the TCM group were significantly increased (P<0.05), and the serum IL-4, IL-5, IL-13 levels were significantly decreased (P<0.05), the levels of SOD and GSH in lung tissues increased significantly (P<0.05), while the level of MDA decreased significantly (P<0.05). HE staining showed that the bronchial mucosal injury, inflammatory cell infiltration, gland hyperplasia, epithelial degeneration and necrosis were significantly ameliorated in the TCM group than in the stress-related asthma group. The expression of Nrf2 and HO-1 protein in lung tissues also increased significantly (P<0.05). ConclusionXiaochuanning Granule can regulate the psychological stress state of stress-related asthmatic rats, alleviate airway inflammatory reaction, and suppress oxidation, which is related to its up-regulation of the Nrf2/HO-1 protein expression.

SELECTION OF CITATIONS
SEARCH DETAIL