Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ann Am Thorac Soc ; 18(6): 981-988, 2021 06.
Article in English | MEDLINE | ID: mdl-33735594

ABSTRACT

Rationale: Iron deficiency, in the absence of anemia, is common in patients with idiopathic and heritable pulmonary arterial hypertension (PAH) and is associated with a worse clinical outcome. Oral iron absorption may be impeded by elevated circulating hepcidin concentrations. The safety and benefit of parenteral iron replacement in this patient population is unclear. Objectives: To evaluate the safety and efficacy of parenteral iron replacement in PAH. Methods: In two randomized, double-blind, placebo-controlled 12-week crossover studies, 39 patients in Europe received a single infusion of ferric carboxymaltose (Ferinject) (1,000 mg or 15 mg/kg if weight <66.7 kg) or saline as placebo, and 17 patients in China received iron dextran (Cosmofer) (20 mg iron/kg body weight) or saline placebo. All patients had idiopathic or heritable PAH and iron deficiency at entry as defined by a serum ferritin <37 µg/L or iron <10.3 µmol/L or transferrin saturations <16.4%. Results: Both iron treatments were well tolerated and improved iron status. Analyzed separately and combined, there was no effect on any measure of exercise capacity (using cardiopulmonary exercise testing or 6-minute walk test) or cardiopulmonary hemodynamics, as assessed by right heart catheterization, cardiac magnetic resonance, or plasma NT-proBNP (N-terminal-pro hormone brain natriuretic peptide) at 12 weeks. Conclusions: Iron repletion by administration of a slow-release iron preparation as a single infusion to patients with PAH with iron deficiency without overt anemia was well tolerated but provided no significant clinical benefit at 12 weeks. Clinical trial registered with ClinicalTrials.gov (NCT01447628).


Subject(s)
Anemia, Iron-Deficiency , Pulmonary Arterial Hypertension , Anemia, Iron-Deficiency/drug therapy , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Familial Primary Pulmonary Hypertension , Humans , Iron , Treatment Outcome
2.
J Lab Autom ; 21(1): 64-75, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26077161

ABSTRACT

Acoustic droplet ejection (ADE) as a means of transferring library compounds has had a dramatic impact on the way in which high-throughput screening campaigns are conducted in many laboratories. Two Labcyte Echo ADE liquid handlers form the core of the compound transfer operation in our 1536-well based ultra-high-throughput screening (uHTS) system. Use of these instruments has promoted flexibility in compound formatting in addition to minimizing waste and eliminating compound carryover. We describe the use of ADE for the generation of assay-ready plates for primary screening as well as for follow-up dose-response evaluations. Custom software has enabled us to harness the information generated by the ADE instrumentation. Compound transfer via ADE also contributes to the screening process outside of the uHTS system. A second fully automated ADE-based system has been used to augment the capacity of the uHTS system as well as to permit efficient use of previously picked compound aliquots for secondary assay evaluations. Essential to the utility of ADE in the high-throughput screening process is the high quality of the resulting data. Examples of data generated at various stages of high-throughput screening campaigns are provided. Advantages and disadvantages of the use of ADE in high-throughput screening are discussed.


Subject(s)
Biomedical Technology/methods , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Acoustics , Biomedical Technology/instrumentation , Data Interpretation, Statistical , Drug Evaluation, Preclinical/instrumentation , High-Throughput Screening Assays/instrumentation , Small Molecule Libraries , Software , Solutions
3.
J Biomol Screen ; 19(5): 758-70, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24518067

ABSTRACT

Several small-compound library subsets (14,000 to 56,000) have been established to complement screening of a larger Genentech corporate library (~1,300,000). Two validation sets (~1% of the total library) containing compounds representative of the main library were chosen by selection of plates or individual compounds. Use of these subsets guided selection of assay configuration, validated assay reproducibility, and provided estimates of hit rates expected from our full library. A larger diversity subset representing the scaffold diversity of the full library (3.4% of the total) was designed for screening more challenging targets with limited reagent availability or low-throughput assays. Retrospective analysis of this subset showed hit rates similar to those of the main library while recovering a higher proportion of hit scaffolds. Finally, a property-restricted diversity set called the "in-between library" was established to identify ligand-efficient compounds of molecular size between those typically found in fragment and high-throughput screening libraries. It was screened at fivefold higher concentrations than the main library to facilitate identification of less potent yet ligand-efficient compounds. Taken together, this work underscores the value of generating multiple purpose-focused, diversity-based library subsets that are designed using computational approaches coupled with internal screening data analyses to accelerate the lead discovery process.


Subject(s)
Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Small Molecule Libraries/chemistry , Chemistry, Pharmaceutical/methods , Dose-Response Relationship, Drug , Drug Discovery , Inhibitory Concentration 50 , Ligands , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL