Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nutrients ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474796

ABSTRACT

The ergogenic effects of acute caffeine intake on endurance cycling performance lasting ~1 h have been well documented in controlled laboratory studies. However, the potential benefits of caffeine supplementation in cycling disciplines such as cross-country/mountain biking have been rarely studied. In cross-country cycling, performance is dependent on endurance capacity, which may be enhanced by caffeine, but also on the technical ability of the cyclist to overcome the obstacles of the course. So, it is possible that the potential benefits of caffeine are not translated to cross-country cycling. The main objective of this study was to investigate the effects of acute caffeine intake, in the form of coffee, on endurance performance during a cross-country cycling time trial. Eleven recreational cross-country cyclists (mean ± SD: age: 22 ± 3 years; nine males and two females) participated in a single-blinded, randomised, counterbalanced and crossover experiment. After familiarisation with the cross-country course, participants completed two identical experimental trials after the ingestion of: (a) 3.00 mg/kg of caffeine in the form of soluble coffee or (b) 0.04 mg/kg of caffeine in the form of decaffeinated soluble coffee as a placebo. Drinks were ingested 60 min before performing a 13.90 km cross-country time trial over a course with eight sectors of varying technical difficulty. The time to complete the trial and the mean and the maximum speed were measured through Global Positioning System (GPS) technology. Heart rate was obtained through a heart rate monitor. At the end of the time trial, participants indicated their perceived level of fatigue using the traditional Borg scale. In comparison to the placebo, caffeine intake in the form of coffee significantly reduced the time to complete the trial by 4.93 ± 4.39% (43.20 ± 7.35 vs. 41.17 ± 6.18 min; p = 0.011; effect size [ES] = 0.300). Caffeine intake reduced the time to complete four out of eight sectors with different categories of technical difficulty (p ≤ 0.010; ES = 0.386 to 0.701). Mean heart rate was higher with caffeine (169 ± 6 vs. 162 ± 13 bpm; p = 0.046; ES = 0.788) but the rating of perceived exertion at the end of the trial was similar with caffeinated coffee than with the placebo (16 ± 1 vs. 16 ± 2 a.u.; p = 0.676; ES = 0.061). In conclusion, the intake of 3 mg/kg of caffeine delivered via soluble coffee reduced the time to complete a cross-country cycling trial in recreational cyclists. These results suggest that caffeine ingested as coffee may be an ergogenic substance for cross-country cycling.


Subject(s)
Athletic Performance , Caffeine , Performance-Enhancing Substances , Adult , Female , Humans , Male , Young Adult , Athletic Performance/physiology , Caffeine/pharmacology , Coffee/chemistry , Cross-Over Studies
2.
Nutrients ; 15(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37242127

ABSTRACT

Sports nutrition is a scientific discipline that explores the relationship between nutrients and physical exercise performance [...].


Subject(s)
Athletic Performance , Sports , Dietary Supplements , Exercise , Nutritional Status
3.
Nutrients ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904177

ABSTRACT

This overview review aimed to describe the evolution of the characteristics of the research on caffeine effects on strength. A total of 189 experimental studies with 3459 participants were included. The median sample size was 15 participants, with an over-representation of men vs. women (79.4 vs. 20.6%). Studies on young participants and elders were scarce (4.2%). Most studies tested a single dose of caffeine (87.3%), while 72.0% used doses adjusted to body mass. Single-dose studies ranged from 1.7 to 7 mg/kg (4.8 ± 1.4 mg/kg), while dose-response studies ranged from 1 to 12 mg/kg. Caffeine was mixed with other substances in 27.0% of studies, although only 10.1% of studies analyzed the caffeine interaction with these substances. Capsules (51.9%) and beverages (41.3%) were the most common forms of caffeine administration. Similar proportions of studies focused on upper (24.9%) or lower body strength 37.6% (37.6% both). Participants' daily intake of caffeine was reported in 68.3% of studies. Overall, the pattern in the study of caffeine's effects on strength performance has been carried out with experiments including 11-15 adults, using a single and moderate dose of caffeine adjusted to participants' body mass in the form of a capsule.


Subject(s)
Caffeine , Performance-Enhancing Substances , Male , Adult , Humans , Female , Aged , Caffeine/pharmacology , Physical Endurance , Coffee , Beverages , Muscle Strength
4.
Crit Rev Food Sci Nutr ; 63(23): 6536-6546, 2023.
Article in English | MEDLINE | ID: mdl-35112608

ABSTRACT

The use of omega-3 polyunsaturated fatty acids (n-3 PUFA) has been studied in physically active population, however, there is a lack of information about the effects of n-3 PUFA supplementation on people with a sedentary behavior or who are undergoing a period of limb immobilization. This systematic review aims to examine the effect of n-3 PUFA on lean mass and muscle protein synthesis (MPS) in absence of physical training. The PubMed, Web of Science, MEDLINE, CINAHL and SPORTDiscus databases were searched following the PRISMA guidelines. Only randomized controlled trials, at least single blind, performed with sedentary humans were considered. Seven studies on a total of 192 individuals were included. Five of the six studies which measured changes in skeletal muscle volume and mass showed higher values with n-3 PUFA. Only two studies measured skeletal muscle protein expression. Both showed beneficial effects of supplementation in muscle protein fractional synthesis rate (FSR), while no effect of n-3 PUFA was observed for mechanistic target of rapamycin (mTOR) and kinase protein (Akt). In addition, ribosomal protein S6 kinase 1 (p70s6k) improved with n-3 PUFA only in one study. Finally, the two studies which measured the skeletal muscle gene expression observed no effect of supplementation.


Subject(s)
Fatty Acids, Omega-3 , Humans , Fatty Acids, Omega-3/pharmacology , Single-Blind Method , Dietary Supplements , Randomized Controlled Trials as Topic , Muscle, Skeletal , Muscle Proteins , Hypertrophy
5.
Nutrients ; 14(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36501186

ABSTRACT

The role of natural polyphenols in reducing oxidative stress and/or supporting antioxidant mechanisms, particularly relating to exercise, is of high interest. The aim of this study was to investigate OliPhenolia® (OliP), a biodynamic and organic olive fruit water phytocomplex, rich in hydroxytyrosol (HT), for the first time within an exercise domain. HT bioavailability from OliP was assessed in fifteen healthy volunteers in a randomized, double-blind, placebo controlled cross-over design (age: 30 ± 2 yrs; body mass: 76.7 ± 3.9 kg; height: 1.77 ± 0.02 m), followed by a separate randomized, double-blinded, cohort trial investigating the short-term impact of OliP consumption (2 × 28 mL∙d−1 of OliP or placebo (PL) for 16-days) on markers of oxidative stress in twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m). In response to a single 28 mL OliP bolus, plasma HT peaked at 1 h (38.31 ± 4.76 ng∙mL−1), remaining significantly elevated (p < 0.001) until 4 h. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and HT were assessed at rest and immediately following exercise (50 min at ~75% V˙O2max then 10 min intermittent efforts) and at 1 and 24 h post-exercise, before and after the 16-day supplementation protocol. Plasma HT under resting conditions was not detected pre-intervention, but increased to 6.3 ± 1.6 ng·mL−1 following OliP only (p < 0.001). OliP demonstrated modest antioxidant effects based on reduced SOD activity post-exercise (p = 0.016) and at 24 h (p ≤ 0.046), and increased GSH immediately post-exercise (p = 0.009) compared with PL. No differences were reported for MDA and CAT activity in response to the exercise protocol between conditions. The phenolic compounds within OliP, including HT, may have specific antioxidant benefits supporting acute exercise recovery. Further research is warranted to explore the impact of OliP following longer-term exercise training, and clinical domains pertinent to reduced oxidative stress.


Subject(s)
Olea , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Malondialdehyde , Superoxide Dismutase/metabolism , Dietary Supplements
6.
Nutrients ; 14(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36297036

ABSTRACT

p-Synephrine is the principal alkaloid of bitter orange (Citrus aurantium). Several recent investigations have found that the intake of 2-3 mg/kg of p-synephrine raises fat oxidation rate during exercise of low-to-moderate intensity. However, these investigations have been carried out only with samples of male participants or mixed men/women samples. Therefore, the aim of this investigation was to study the effect of p-synephrine intake on fat oxidation during exercise of increasing intensity in healthy women. Using a double-blind, randomized experiment, 18 healthy recreationally active women performed two identical exercise trials after the ingestion of (a) 3 mg/kg of p-synephrine and (b) 3 mg/kg of a placebo (cellulose). The exercise trials consisted of a ramp test (from 30 to 80% of maximal oxygen uptake; VO2max) on a cycle ergometer while substrate oxidation rates were measured at each workload by indirect calorimetry. In comparison to the placebo, the intake of p-synephrine increased resting tympanic temperature (36.1 ± 0.5 vs. 36.4 ± 0.4 °C p = 0.033, d = 0.87) with no effect on resting heart rate (p = 0.111) and systolic (p = 0.994) and diastolic blood pressure (p = 0.751). During exercise, there was no significant effect of p-synephrine on fat oxidation rate (F = 0.517; p = 0.484), carbohydrate oxidation rate (F = 0.730; p = 0.795), energy expenditure rate (F = 0.480; p = 0.833), heart rate (F = 4.269; p = 0.068) and participant's perceived exertion (F = 0.337; p = 0.580). The maximal rate of fat oxidation with placebo was 0.26 ± 0.10 g/min and it was similar with p-synephrine (0.28 ± 0.08 g/min, p = 0.449, d = 0.21). An acute intake of 3 mg/kg of p-synephrine before exercise did not modify energy expenditure and substrate oxidation during submaximal aerobic exercise in healthy active women. It is likely that the increase in resting tympanic temperature induced by p-synephrine hindered the effect of this substance on fat utilization during exercise in healthy active women.


Subject(s)
Citrus , Synephrine , Female , Humans , Carbohydrates , Cellulose , Citrus/chemistry , Dietary Supplements , Energy Metabolism , Exercise/physiology , Oxidation-Reduction , Oxygen , Oxygen Consumption , Plant Extracts/pharmacology , Synephrine/pharmacology , Double-Blind Method
7.
J Int Soc Sports Nutr ; 19(1): 366-380, 2022.
Article in English | MEDLINE | ID: mdl-35813843

ABSTRACT

The aim of this investigation was to determine the effect of a moderate dose of caffeine (3 mg/kg/b.m.) on muscular power and strength and shot put performance in trained athletes. METHODS: Thirteen shot putters (eight men and five women) participated in a double-blind, placebo-controlled, randomized experiment. In two different trials, participants ingested either 3 mg/kg/b.m. of caffeine or a placebo. Forty-five min after substance ingestion, athletes performed a handgrip dynamometry test, a countermovement jump (CMJ), a squat jump (SJ), and a maximum-velocity push-up. The athletes also performed three types of throws: a backwards throw, a standing shot put and a complete shot put. RESULTS: In comparison with the placebo, caffeine ingestion increased CMJ height (32.25 ± 7.26 vs. 33.83 ± 7.72 cm, respectively; effect size (ES) = 0.82, p = 0.012; +5.0%;) and SJ height (29.93 ± 7.88 vs. 31.40 ± 7.16 cm; ES = 0.63, p = 0.042; +6.4%) and distance in the standing shot put (10.27 ± 1.77 m vs. 10.55 ± 1.94 m; ES = 0.87, p = 0.009; +2.6%). However, caffeine ingestion did not increase strength in the handgrip test, power in the ballistic push-up, or distance in the backwards throw (all p > 0.05). Shot put performance changed from 11.24 ± 2.54 to 11.35 ± . 2.57 m (ES = 0.33, p = 0.26; +1.0%), although the difference did not reach statistically significant differences. Caffeine ingestion did not increase the prevalence of side effects (nervousness, gastrointestinal problems, activeness, irritability, muscular pain, headache, and diuresis) in comparison with the placebo (p > 0.05). CONCLUSION: In summary, caffeine ingestion with a dose equivalent to 3 mg/kg/b.m. elicited moderate improvements in several aspects of physical performance in trained shot putters but with a small effect on distance in a complete shot put.


Subject(s)
Athletic Performance , Caffeine , Athletes , Caffeine/pharmacology , Dietary Supplements , Double-Blind Method , Female , Hand Strength , Humans , Male , Muscle Strength
8.
Eur J Nutr ; 61(8): 3823-3834, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35380245

ABSTRACT

PURPOSE: The aim of this study was to systematically review evidence on the prevalence and magnitude of side effects associated with caffeine supplementation in athletes. METHODS: Systematic searches through the PubMed, VHL, Scopus, and Web of Science databases were conducted according to the PRISMA guidelines. Peer-reviewed articles written in English that reported the prevalence/percentage or magnitude/effect size of side effects after caffeine supplementation in athletes in a sports context were included. Studies were grouped by the dose of caffeine administered as follows: low = ≤ 3.0 mg/kg; moderate = from 3.1 to 6.0 mg/kg; high = ≥ 6.1 mg/kg. The magnitude of the side effects was calculated with effect sizes. RESULTS: The search retrieved 25 studies that met the inclusion/exclusion criteria with a pooled sample of 421 participants. The supplementation with caffeine produced a higher prevalence or magnitude of all side effects under investigation when compared to placebo/control situations. The prevalence (magnitude) was between 6 and 34% (ES between 0.13 and 1.11) for low doses of caffeine, between 0 and 34% (ES between -0.13 and 1.20) for moderate doses of caffeine, and between 8 and 83% (ES between 0.04 and 1.52) with high doses of caffeine. The presence of tachycardia/heart palpitations and the negative effects on sleep onset had the highest prevalence and magnitude, in athletes using supplementation with caffeine. CONCLUSION: In summary, caffeine supplementation in the doses habitually used to enhance physical performance produces several side effects, both after exercise and at least 24 h after the ingestion. However, the prevalence and magnitude of side effects with high doses of caffeine were habitually higher than with low doses of caffeine. From a practical perspective, using ~3.0 mg/kg of caffeine may be the dose of choice to obtain the ergogenic benefits of caffeine with the lowest prevalence and magnitude of side effects.


Subject(s)
Athletic Performance , Performance-Enhancing Substances , Humans , Caffeine/adverse effects , Physical Endurance , Performance-Enhancing Substances/adverse effects , Dietary Supplements
9.
Article in English | MEDLINE | ID: mdl-35270556

ABSTRACT

Although several previous studies examined the effect of pre-exercise caffeine ingestion on judo-specific performance, the optimal dose of caffeine to maximise the ergogenic effects for judoka is not clear. The main purpose of this study was to analyse the effects of oral administration of 3 and 6 mg/kg of caffeine on a battery of physical tests associated with judo performance. Ten highly trained national-level judoka (6 men and 4 women, age: 24.1 ± 4.7 years, body mass: 73.4 ± 12.9 kg, 15.1 ± 5.2 years of judo training experience, 2.6 mg/kg/day of habitual caffeine intake) participated in a randomized, crossover, placebo-controlled and double-blind experiment. Each judoka performed three identical experimental sessions after: (a) ingestion of 3 mg/kg of caffeine (CAF-3); (b) ingestion of 6 mg/kg of caffeine (CAF-6); (c) ingestion of a placebo (PLAC). After 60 min for substance absorption, participants performed the following tests: (a) bench press exercise with 50% of the load representing one-repetition maximum (1RM), including three sets of three repetitions; (b) bench pull exercise with 50% of 1RM including three sets of three repetitions; (c) countermovement jump; (d) maximal isometric handgrip strength test; (e) dynamic and isometric versions of the Judogi Grip Strength Test. In comparison with PLAC, the ingestion of CAF-3 and CAF-6 increased peak bar velocity in the bench press exercise (1.27 ± 0.11 vs. 1.34 ± 0.13 and 1.34 ± 0.15 m/s, respectively; p < 0.01) and mean bar velocity in the bench pull exercise (1.03 ± 0.15 vs. 1.13 ± 0.13 and 1.17 ± 0.15 m/s; p < 0.05). Only CAF-6 increased mean bar velocity in the bench press exercise when compared with PLAC (0.96 ± 0.09 vs. 1.02 ± 0.11 m/s; p < 0.05). Both CAF-3 and CAF-6 significantly increased the number of repetitions in the Judogi Grip Strength Test (17 ± 10 vs. 20 ± 10 and 20 ± 10 repetitions; p < 0.05). There were no differences between PLAC and caffeine doses in the remaining tests. The pre-exercise ingestion of 3 and 6 mg/kg of caffeine effectively obtained meaningful improvements in several aspects associated with judo performance. From a practical viewpoint, the selection between 3 or 6 mg/kg of caffeine may depend on previously tested individual responses during simulated competition.


Subject(s)
Caffeine , Martial Arts , Adult , Athletes , Cross-Over Studies , Double-Blind Method , Female , Hand Strength , Humans , Male , Martial Arts/physiology , Muscle Strength/physiology , Young Adult
10.
Biol Sport ; 38(4): 595-601, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34937969

ABSTRACT

To date, there is a lack of information about the optimal conditions of the warm-up to lead to a better performance in elite tennis players. The aim of this study was to compare the effects of two different warm-up protocols (dynamic vs. self-myofascial release with foam rolling) on neuromuscular variables associated with physical determinants of tennis performance. Using a crossover randomised experimental design, eleven professional men tennis players (20.6 ± 3.5 years) performed either a dynamic warm-up (DWU) or a self-myofascial release with foam rolling (SMFR) protocol. DWU consisted of 8 min of dynamic exercises at increasing intensity and SMFR consisted of 8 min of rolling on each lower extremity unilaterally. Just before (baseline) and after completing warm-up protocols, players performed a countermovement jump (CMJ), the 5-0-5 agility test, a 10-m sprint test and the Straight Leg Raise and Thomas tests to assess range of motion. Compared to baseline, the DWU was more effective to reduce the time in the 5-0-5 test than SMFR (-2.23 vs. 0.44%, respectively, p = 0.042, ηp2 = 0.19). However, both warm-up protocols similarly affected CMJ (2.32 vs. 0.61%, p = 0.373, ηp2 = 0.04) and 10-m sprint time changes (-1.26 vs. 1.03%, p = 0.124, ηp2 = 0.11). Changes in range of motion tests were also similar with both protocols (p = 0.448-1.000, ηp2 = 0.00-0.02). Overall, both DWU and SMFR were effective to prepare well-trained tennis players for highly demanding neuromuscular actions. However, DWU offered a better preparation for performing change of direction and sprint actions, and hence, in high-performance tennis players, the warm-up should include dynamic exercises.

11.
J Int Soc Sports Nutr ; 18(1): 71, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34794476

ABSTRACT

BACKGROUND: We aimed to perform an umbrella review of meta-analyses examining the effects of sodium bicarbonate supplementation on exercise performance. METHODS: We systematically searched for meta-analyses that examined the effects of sodium bicarbonate supplementation on exercise performance. The methodological quality of the included reviews was evaluated using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR 2) checklist. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework for downgrading the certainty in evidence was used, which included assessments of risk of bias, inconsistency, indirectness, imprecision, and publication bias. RESULTS: Eight reviews of moderate and high methodological quality met inclusion criteria. Using the GRADE framework, evidence for the ergogenic effects of sodium bicarbonate supplementation on peak and mean power in the Wingate test and Yo-Yo test performance was classified as being of moderate quality. The evidence for these outcomes did not receive a point on the indirectness GRADE item, as "serious indirectness" was detected. Low-quality evidence was found for the ergogenic effect of sodium bicarbonate supplementation on endurance events lasting ∼45 s to 8 min, muscle endurance, and 2000-m rowing performance. Evidence for these outcomes was classified as low quality, given that risk of bias, indirectness, and publication bias were assessed as "unclear", "serious", and "strongly suspected", respectively. The ergogenic effects ranged from trivial (pooled effect size: 0.09) to large (pooled effect size: 1.26). Still, for most outcomes, sodium bicarbonate elicited comparable ergogenic effects. For example, sodium bicarbonate produced similar effects on performance in endurance events lasting ∼45 s to 8 min, muscle endurance tests, and Yo-Yo test (pooled effect size range: 0.36 to 0.40). No significant differences between the effects of sodium bicarbonate and placebo were found for general mean power, muscle strength, and repeated-sprint ability. CONCLUSION: Based on meta-analyses of moderate to high quality, it can be concluded that sodium bicarbonate supplementation acutely enhances peak anaerobic power, anaerobic capacity, performance in endurance events lasting ∼45 s to 8 min, muscle endurance, 2000-m rowing performance, and high-intensity intermittent running. More research is needed among women to improve the generalizability of findings.


Subject(s)
Athletic Performance , Dietary Supplements , Exercise , Performance-Enhancing Substances , Sodium Bicarbonate , Humans , Performance-Enhancing Substances/pharmacology , Sodium Bicarbonate/pharmacology , Systematic Reviews as Topic
12.
Nutrients ; 13(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34684665

ABSTRACT

INTRODUCTION: Recent original research and meta-analyses suggest that acute caffeine supplementation improves exercise performance in team-sport athletes (TSA). Nonetheless, most of the studies testing the effects of caffeine on TSA included samples of male athletes, and there is no meta-analysis of the performance-enhancing effects of caffeine on female TSA. The aim of the present study was to synthesize the existing literature regarding the effect of caffeine supplementation on physical performance in adult female TSA. METHODS: A search was performed in Pubmed/Medline, SPORTDiscus and Scopus. The search was performed from the inception of indexing until 1 September 2021. Crossover randomized controlled trials (RCT) assessing the effects of oral caffeine intake on several aspects of performance in female TSA were selected. The methodological quality and risk of bias were assessed for individual studies using the Physiotherapy Evidence Database scale (PEDro) and the RoB 2 tool. A random-effects meta-analysis of standardized mean differences (SMD) was performed for several performance variables. RESULTS: The search retrieved 18 articles that fulfilled the inclusion/exclusion criteria. Overall, most of the studies were of excellent quality with a low risk of bias. The meta-analysis results showed that caffeine increased performance in specific team-sport skills (SMD: 0.384, 95% confidence interval (CI): 0.077-0.691), countermovement jump (SMD: 0.208, CI: 0.079-0.337), total body impacts (SMD: 0.488; 95% CI: 0.050, 0.927) and handgrip strength (SMD: 0.395, CI: 0.126-0.665). No effects were found on the ratings of perceived exertion, squat jumps, agility, repeated sprint ability or agility tests performed after fatigue. CONCLUSIONS: The results of the meta-analysis revealed that acute caffeine intake was effective in increasing some aspects of team-sports performance in women athletes. Hence, caffeine could be considered as a supplementation strategy for female athletes competing in team sports.


Subject(s)
Athletes , Athletic Performance , Caffeine/pharmacology , Dietary Supplements , Physical Functional Performance , Female , Humans
13.
J Int Soc Sports Nutr ; 18(1): 49, 2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34147116

ABSTRACT

PURPOSE: Previous investigations have found positive effects of acute ingestion of capsules containing 4-to-9 mg of caffeine per kg of body mass on several aspects of judo performance. However, no previous investigation has tested the effectiveness of caffeinated chewing gum as the form of caffeine administration for judoists. The main goal of this study was to assess the effect of acute ingestion of a caffeinated chewing gum on the results of the special judo fitness test (SJFT). METHODS: Nine male elite judo athletes of the Polish national team (23.7 ± 4.4 years, body mass: 73.5 ± 7.4 kg) participated in a randomized, crossover, placebo-controlled and double-blind experiment. Participants were moderate caffeine consumers (3.1 mg/kg/day). Each athlete performed three identical experimental sessions after: (a) ingestion of two non-caffeinated chewing gums (P + P); (b) a caffeinated chewing gum and a placebo chewing gum (C + P; ~2.7 mg/kg); (c) two caffeinated chewing gums (C + C; ~5.4 mg/kg). Each gum was ingested 15 min before performing two Special Judo Fitness Test (SJFT) which were separated by 4 min of combat activity. RESULTS: The total number of throws was not different between P + P, C + P, and C + C (59.66 ± 4.15, 62.22 ± 4.32, 60.22 ± 4.08 throws, respectively; p = 0.41). A two-way repeated measures ANOVA indicated no significant substance × time interaction effect as well as no main effect of caffeine for SJFT performance, SJFT index, blood lactate concentration, heart rate or rating of perceived exertion. CONCLUSIONS: The results of the current study indicate that the use of caffeinated chewing gum in a dose up to 5.4 mg/kg of caffeine did not increase performance during repeated SJFTs.


Subject(s)
Athletes , Athletic Performance , Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Chewing Gum , Martial Arts/physiology , Athletic Performance/physiology , Athletic Performance/statistics & numerical data , Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Cross-Over Studies , Double-Blind Method , Heart Rate , Humans , Lactic Acid/blood , Male , Martial Arts/statistics & numerical data , Physical Fitness , Placebos/administration & dosage , Young Adult
14.
Eur J Nutr ; 60(8): 4531-4540, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34132880

ABSTRACT

PURPOSE: To date, no previous investigation has studied the effect of acute caffeine ingestion on futsal performance during futsal-specific testing and during a simulated match. Therefore, the aim of this investigation was to establish the effects of acute caffeine intake on futsal-specific tests and match-play running performance in male futsal players. METHODS: Sixteen high-performance futsal players participated in a randomized, crossover, placebo-controlled and double-blind experiment. Each player completed two identical trials after ingesting either caffeine (3 mg/kg) or a placebo (cellulose). The trials consisted of a battery of futsal-specific tests (countermovement jump, 20-m sprint test, and a futsal kicking velocity and accuracy test) followed by a simulated futsal match (2 halves of 7.5 min). During the match, players' running performance was assessed with local positioning system devices. RESULTS: In comparison to the placebo, caffeine ingestion increased jump height by 2.8% (p = 0.048; ES = 0.29) and reduced the time to complete the 20-m sprint test by -2.2% (p = 0.044; ES = - 0.54). Additionally, acute caffeine intake improved the distance covered at above 14.4 km/h by 19.6% (p = 0.021; ES = 0.58), the number of body impacts by 8.1% (p = 0.040; ES = 0.27) and the number of accelerations/decelerations by 4.2% (p = 0.044; ES = 0.57) during the simulated futsal match. However, no differences were reported in ball velocity or shooting accuracy in the futsal kicking test. There were no differences in the prevalence of side effects reported in the hours after the ingestion of the treatments. CONCLUSION: Three mg/kg of caffeine enhanced several physical variables associated with futsal such as jump and sprint performance, and improved high-speed running and accelerations/decelerations during a simulated futsal match. Caffeine supplementation with a moderate dose can be considered as an effective ergogenic aid for futsal performance with low prevalence of side effects. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov with the following ID: NCT04852315. The study was retrospectively registered by 18 April 2020.


Subject(s)
Athletic Performance , Performance-Enhancing Substances , Running , Caffeine , Eating , Humans , Male
15.
Article in English | MEDLINE | ID: mdl-34072182

ABSTRACT

This meta-analysis aimed to explore the effects of caffeine ingestion on muscular endurance and muscular strength in women. Five databases were searched to find relevant studies. A random-effects meta-analysis of standardized mean differences (SMD) was performed for data analysis. Subgroup meta-analyses explored the effects of caffeine on upper-body and lower-body muscular endurance and muscular strength. Eight crossover placebo-controlled studies were included in the review. In the main meta-analysis that considered data from all included studies, there was a significant ergogenic effect of caffeine on muscular endurance (SMD = 0.25; p = 0.027) and muscular strength (SMD = 0.18; p < 0.001). In a subgroup analysis that considered only upper-body exercises, there was a significant ergogenic effect of caffeine on muscular endurance (SMD = 0.20; p = 0.007) and muscular strength (SMD = 0.17; p < 0.001). In a subgroup analysis that considered only lower-body exercises, there was no significant difference between caffeine and placebo for muscular endurance (SMD = 0.43; p = 0.092) or muscular strength (SMD = 0.16; p = 0.109). The main finding of this meta-analysis is that caffeine ingestion has a significant ergogenic effect on muscular endurance and muscular strength in women. The effects reported in this analysis are similar to those previously observed in men and suggest that women may use caffeine supplementation as an ergogenic aid for muscular performance. Future research is needed to explore the effects of caffeine on lower-body muscular endurance and muscular strength in this population.


Subject(s)
Performance-Enhancing Substances , Caffeine , Eating , Exercise , Female , Humans , Male , Muscle Strength , Physical Endurance
16.
Nutrients ; 13(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652910

ABSTRACT

This study investigated the effect of decaffeinated green tea extract (dGTE), with or without antioxidant nutrients, on fat oxidation, body composition and cardio-metabolic health measures in overweight individuals engaged in regular exercise. Twenty-seven participants (20 females, 7 males; body mass: 77.5 ± 10.5 kg; body mass index: 27.4 ± 3.0 kg·m2; peak oxygen uptake (O2peak): 30.2 ± 5.8 mL·kg-1·min-1) were randomly assigned, in a double-blinded manner, either: dGTE (400 mg·d-1 (-)-epigallocatechin-3-gallate (EGCG), n = 9); a novel dGTE+ (400 mg·d-1 EGCG, quercetin (50 mg·d-1) and α-lipoic acid (LA, 150 mg·d-1), n = 9); or placebo (PL, n = 9) for 8 weeks, whilst maintaining standardised, aerobic exercise. Fat oxidation ('FATMAX' and steady state exercise protocols), body composition, cardio-metabolic and blood measures (serum glucose, insulin, leptin, adiponectin, glycerol, free fatty acids, total cholesterol, high [HDL-c] and low-density lipoprotein cholesterol [LDL-c], triglycerides, liver enzymes and bilirubin) were assessed at baseline, week 4 and 8. Following 8 weeks of dGTE+, maximal fat oxidation (MFO) significantly improved from 154.4 ± 20.6 to 224.6 ± 23.2 mg·min-1 (p = 0.009), along with a 22.5% increase in the exercise intensity at which fat oxidation was deemed negligible (FATMIN; 67.6 ± 3.6%O2peak, p = 0.003). Steady state exercise substrate utilisation also improved for dGTE+ only, with respiratory exchange ratio reducing from 0.94 ± 0.01 at week 4, to 0.89 ± 0.01 at week 8 (p = 0.004). This corresponded with a significant increase in the contribution of fat to energy expenditure for dGTE+ from 21.0 ± 4.1% at week 4, to 34.6 ± 4.7% at week 8 (p = 0.006). LDL-c was also lower (normalised fold change of -0.09 ± 0.06) for dGTE+ by week 8 (p = 0.038). No other significant effects were found in any group. Eight weeks of dGTE+ improved MFO and substrate utilisation during exercise, and lowered LDL-c. However, body composition and cardio-metabolic markers in healthy, overweight individuals who maintained regular physical activity were largely unaffected by dGTE.


Subject(s)
Adipose Tissue/drug effects , Antioxidants/administration & dosage , Overweight/therapy , Plant Extracts/administration & dosage , Tea , Adiponectin/blood , Adult , Bilirubin/blood , Blood Glucose/drug effects , Body Composition/drug effects , Body Mass Index , Cardiometabolic Risk Factors , Cholesterol/blood , Double-Blind Method , Energy Metabolism/drug effects , Enzymes/blood , Exercise/physiology , Fatty Acids, Nonesterified/blood , Female , Glycerol/blood , Humans , Insulin/blood , Leptin/blood , Male , Middle Aged , Overweight/physiopathology , Oxidation-Reduction/drug effects , Oxygen Consumption/drug effects
17.
Nutrients ; 13(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467423

ABSTRACT

The p-synephrine is the principal phytochemical found in bitter orange (Citrus aurantium). This substance is widely included in dietary supplements for weight loss/body fat reduction due to its potential benefits of increasing fat oxidation. For years, p-synephrine-containing dietary supplements have been marketed without proper knowledge of their true effectiveness to enhance fat utilization, especially when combined with exercise. However, the effects of p-synephrine on fat oxidation during exercise have been investigated in the last few years. The aim of the current discussion is to summarize the evidence on the effects of p-synephrine intake on fat oxidation and performance during exercise. Previous investigations have demonstrated that the acute intake of p-synephrine does not modify running sprint performance, jumping capacity, or aerobic capacity. However, the acute intake of p-synephrine, in a dose of 2-3 mg/kg of body mass, has been effective to enhance the rate of fat oxidation during incremental and continuous exercise. This effect has been observed in a range of exercise workloads between 30% and 80% of peak oxygen uptake (VO2peak). The p-synephrine has the ability to increase the maximal rate of fat oxidation during exercise of increasing intensity without affecting the workload at which maximal fat oxidation is obtained (Fatmax). The effect of p-synephrine on fat oxidation is normally accompanied by a concomitant reduction of carbohydrate utilization during exercise, without modifying the energy expended during exercise. The shifting in substrate oxidation is obtained without any effect on heart rate during exercise and the prevalence of adverse effects is negligible. Thus, the acute use of p-synephrine, or p-synephrine-containing products, might offer some benefits for those individuals seeking higher fat utilization during exercise at low to moderate intensities. However, more research is still necessary to determine if the effect of p-synephrine on fat oxidation during exercise is maintained with chronic ingestion, in order to ascertain the utility of this substance in conjunction with exercise programs to produce an effective body fat/weight loss reduction.


Subject(s)
Exercise , Synephrine/pharmacology , Body Composition/drug effects , Dietary Supplements , Humans , Oxidation-Reduction/drug effects , Performance-Enhancing Substances/pharmacology , Phytochemicals , Plant Extracts/administration & dosage , Plant Extracts/adverse effects , Plant Extracts/pharmacology , Synephrine/administration & dosage , Synephrine/adverse effects
18.
Eur J Nutr ; 60(3): 1181-1195, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33137206

ABSTRACT

PURPOSE: To systematically review studies that examined the influence of the CYP1A2 -163C>A polymorphism on the ergogenic effects of caffeine and to discuss some of the reasons for the discrepancies in findings between the studies. METHODS: This review was performed in accordance with the PRISMA guidelines. The search for studies was performed through nine databases. RESULTS: Seventeen studies were included in the review. Based on the included studies, it seems that individuals with the AA or AC/CC genotype may experience an increase in performance following caffeine ingestion. Significant differences between genotypes were found in four studies, and all four reported a more favorable response in the AA vs. AC/CC genotype. These results suggest that if there is an actual genotype-related effect of acute caffeine supplementation, it might be in that direction. In the studies that reported such data for aerobic endurance, the findings are specific to male participants performing cycling time trials (distances of ≥ 10 km) and ingesting caffeine 60 min before exercise. For high-intensity exercise, two studies reported that genotype variations determined the response to caffeine ingestion, even though the differences were either small (~ 1 additional repetition in high-load resistance exercise set performed to muscular failure) or inconsistent (i.e., observed only in one out of eight performance tests). CONCLUSIONS: CYP1A2 genotype variations may modulate caffeine's ergogenic effects, but the differences between genotypes were small, inconsistent, or limited to specific exercise scenarios. Future studies with larger sample sizes are needed to fully elucidate this research area.


Subject(s)
Performance-Enhancing Substances , Caffeine , Cytochrome P-450 CYP1A2/genetics , Eating , Genotype , Humans , Male , Physical Endurance
19.
Res Q Exerc Sport ; 92(4): 659-668, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32809924

ABSTRACT

Purpose: Dietary supplement use by athletes has been the topic of previous research; however, the lack of homogeneity among published studies makes it difficult to analyze the differences, if any, in the patterns of use between male and female athletes. The aim of this study was to determine gender differences in the patterns of dietary supplement use by elite athletes. Methods: A total of 504 elite athletes (329 males and 175 females) participating in individual and team sports completed a validated questionnaire on dietary supplement use during the preceding season. The dietary supplements were categorized according to the latest IOC consensus statement. Results: A higher proportion of male versus female athletes (65.3 versus 56.5%, p < .05) consumed dietary supplements. Both male and female athletes reported a similar mean consumption of dietary supplements (3.2 ± 2.1 versus 3.4 ± 2.3 supplements/season, respectively; p = .45). Protein supplements were the most commonly consumed supplements in male athletes (49.8%) and their prevalence was higher than in female athletes (29.3%, p < .01). In females, multivitamins (39.4%) and branched-chain amino acids (39.4%) were the most commonly consumed supplements and iron supplementation was more prevalent than in males (22.2% versus 10.2%, p = .01). A higher proportion of male athletes relied on themselves to plan dietary supplements use (48.0%), while female appeared to rely more on doctors (34.0%, p < .01). Conclusion: In summary, male athletes had a slightly higher prevalence in the use of supplements than their female counterparts, specifically regarding protein supplements, and were more involved in the self-prescription of supplements.


Subject(s)
Athletes , Dietary Supplements , Female , Humans , Male , Prevalence , Sex Factors , Surveys and Questionnaires
20.
Nutrients ; 12(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142672

ABSTRACT

Sports supplements are commonly used by elite athletes with the main goal of enhancing sport performance. Supplements use might be substantially different depending on the sport discipline, sex, and competitive level. To date, data about prevalence and the most-commonly used supplements in handball are scarce. Thus, the aim of this investigation was to determine the patterns of supplements use by handball players of both sexes and with different competitive levels: One hundred and eighty-seven handball players (112 men and 75 women) of different competitive levels (106 professional and 81 amateur) completed a validated self-administered questionnaire about supplements use. Supplements were classified according to the categorization of the Australian Institute of Sport (AIS). Overall, 59.9% of the handball players (n = 112) declared the use of at least one supplement and there were no significant differences between men and women (58.9% vs. 61.3%, p = 0.762) nor between professional vs. amateur handball players (67.1% vs. 53.8%, p = 0.074). The most prevalent supplements were sports drinks (42.2%), followed by energy bars (35.3%) and caffeine-containing products (31.6%). However, a greater consumption of group A supplements (those with strong scientific evidence; p = 0.029) and group B supplements (those with emerging scientific support, p = 0.012) was observed in male compared to female handball players. Supplements categorized as medical supplements were more commonly consumed in professional vs. amateur players (0.48 ± 0.80 vs. 0.21 ± 0.44, supplements p < 0.006). Additionally, a higher consumption of group B supplements was observed in professional compared to amateur players (0.58 ± 0.88 vs. 0.33 ± 0.72 supplements, p = 0.015). Handball players revealed a moderate use of supplements while sex and competitive level slighted changed the pattern of supplements use. A high portion of handball players use supplements as fuel during exercise and reported the use of caffeine-containing supplements to enhance performance.


Subject(s)
Athletes/statistics & numerical data , Dietary Supplements/statistics & numerical data , Performance-Enhancing Substances/therapeutic use , Sports/statistics & numerical data , Adult , Australia/epidemiology , Caffeine/therapeutic use , Energy Drinks/statistics & numerical data , Female , Humans , Male , Prevalence , Sex Distribution , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL