Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Medicine (Baltimore) ; 101(35): e30253, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36107570

ABSTRACT

RATIONALE: Pendred syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss, inner ear malformations, goiter, and abnormal organification of iodide. It is caused by mutations in SLC26A4 gene, which encodes pendrin (a transporter of chloride, bicarbonate, and iodide). Pendred syndrome is a common cause of syndromic deafness, but the metabolic abnormalities it causes are often overlooked. Here, we report the case of a patient diagnosed with Pendred syndrome with hypokalemia. PATIENT CONCERNS: A 53-year-old deaf-mute woman was hospitalized due to severe limb asthenia. The emergency examination showed that her blood potassium level was 1.8 mmol/L. DIAGNOSES: Through the genetic test, we found a mutation of SLC26A4 gene in NM_000441: c.2027T>A, p.L676Q, as well as the SLC26A4 exon 5-6 deletion. These genetic variations pointed to Pendred syndrome (an autosomal recessive disorder that mainly affects the inner ear, thyroid, and kidney) which is a common cause of syndromic deafness. INTERVENTIONS: The patient was treated with potassium supplements and screened for the cause of hypokalemia. OUTCOMES: The patient was discharged after her potassium levels rose to the normal range. LESSONS: Patients with Pendred syndrome may also have certain metabolic abnormalities; thus, more attention should be paid to them during clinical diagnosis.


Subject(s)
Deafness , Goiter, Nodular , Hearing Loss, Sensorineural , Hypokalemia , Bicarbonates , Chlorides , Female , Goiter, Nodular/complications , Goiter, Nodular/diagnosis , Goiter, Nodular/genetics , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Humans , Hypokalemia/genetics , Iodides/metabolism , Middle Aged , Mutation , Potassium , Sulfate Transporters/genetics
2.
Brain Imaging Behav ; 16(6): 2556-2568, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35922652

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with brain damage and cognitive decline. Despite the fact that the thalamus involves aspects of cognition and is typically affected in T2DM, existing knowledge of subregion-level thalamic damage and its associations with cognitive performance in T2DM patients is limited. The thalamus was subdivided into 8 subregions in each hemisphere. Resting-state functional and structural MRI data were collected to calculate resting-state functional connectivity (rsFC) and gray matter volume (GMV) of each thalamic subregion in 62 T2DM patients and 50 healthy controls. Compared with controls, T2DM patients showed increased rsFC of the medial pre-frontal thalamus, posterior parietal thalamus, and occipital thalamus with multiple cortical regions. Moreover, these thalamic functional hyperconnectivity were associated with better cognitive performance and lower glucose variability in T2DM patients. However, there were no group differences in GMV for any thalamic subregions. These findings suggest a possible neural compensation mechanism whereby selective thalamocortical functional hyperconnectivity facilitated by better glycemic control help to preserve cognitive ability in T2DM patients, which may ultimately inform intervention and prevention of T2DM-related cognitive decline in real-world clinical settings.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Humans , Magnetic Resonance Imaging , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Thalamus/diagnostic imaging , Gray Matter/diagnostic imaging
3.
BMC Endocr Disord ; 18(1): 30, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29793475

ABSTRACT

BACKGROUND: This study aimed to detect changes in hormone levels in the hypothalamic-pituitary-ovarian axis in Sprague-Dawley (SD) rats with hypothyroidism, and identify differences in the pregnancy and abortion rates of female adult rats. The potential role of gonadotropin releasing hormone (GnRH) as the link between the hypothalamic-pituitary-ovarian axis and reproductive function regulated by thyroid hormones was also investigated. METHODS: Female SD rats (n = 136) were causally classified into two groups: the normal-drinking-water group (n = 60) and the 0.05% propylthiouracil-drinking-water group (PTU 2 mg/kg/day, n = 76) to establish an adult rat model of hypothyroidism (6 weeks). Female and male rats at a ratio of 1:2 were used to establish a hypothyroidism pregnancy model. GnRH mRNA and GnRH receptor (GnRHR) expression in rats was detected using real time quantitative PCR(qRT-PCR) and immunohistochemistry, respectively. RESULTS: The abortion rate differed significantly between the hypothyroidism pregnancy group and the normal pregnancy group (P < 0.05). No significant differences were found in the distribution of the GnRHR among the five nuclei (hypothalamic arcuate nucleus, hypothalamic ventromedial nucleus, hypothalamic anterior nucleus, paraventricular nucleus of the hypothalamus, and ventral premammillary nucleus) of the hypothalamus and ovary (P > 0.05). Hypothyroidism had no significant effect on GnRH mRNA expression in the hypothalamic-pituitary-ovarian axis in the four groups (normal control group, normal pregnancy group, hypothyroidism pregnancy group, and hypothyroidism group) (P > 0.05). CONCLUSIONS: Hypothyroidism had an adverse impact on pregnancy in rats and may affect the distribution of pituitary GnRHR, whereas it did not obviously affect the distribution of GnRHR in the nuclei of the hypothalamus and ovary. Hypothyroidism had no effect on GnRH mRNA expression.


Subject(s)
Hypothalamus/pathology , Hypothyroidism/complications , Infertility, Female/etiology , Ovary/pathology , Pituitary Gland/pathology , Reproduction , Animals , Biomarkers/metabolism , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Hypothyroidism/metabolism , Hypothyroidism/pathology , Infertility, Female/diagnosis , Infertility, Female/metabolism , Male , Ovary/metabolism , Pituitary Gland/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, LHRH/genetics , Receptors, LHRH/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL