Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Int J Biol Macromol ; 265(Pt 1): 130742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492704

ABSTRACT

In this work, soybean lecithin (LC) was used to modify ß-cyclodextrin (ß-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified ß-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of ß-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between ß-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.


Subject(s)
Cyclodextrins , Nanoparticles , beta-Cyclodextrins , Vitamin E/chemistry , Lecithins , beta Carotene/chemistry , Glycine max , Emulsions/chemistry , beta-Cyclodextrins/chemistry , Excipients , Digestion , Particle Size
2.
Food Chem ; 424: 136362, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37207605

ABSTRACT

The current study was to investigate how microwave on flaxseed affected the physicochemical stability and gastrointestinal digestion of oil bodies (OBs) in flaxseed milk. Flaxseed was subjected to moisture adjustment (30-35 wt%, 24 h), and microwave exposure (0-5 min, 700  W). Microwave treatment slightly weakened the physical stability of flaxseed milk indicated by Turbiscan Stability Index, but there were no visual phase separation during 21 days of storage at 4 °C. Upon microwave treatment, OBs experienced the layer-by-layer encapsulation into loose interface embedding by storage protein-gum polysaccharide complex from bulk phase, resulting in lower viscoelasticity of flaxseed milk. The OBs underwent earlier interface collapse and lipolysis during gastrointestinal digestion, followed by synergistic micellar absorption, faster chylomicrons transport within enterocytes of rats fed flaxseed milk. The accumulation of α-linolenic acid and synergistic conversion into docosapentaenoic and docosahexanoic acids in jejunum tissue were achieved accompanied by the interface remodeling of OBs in flaxseed milk.


Subject(s)
Flax , Rats , Animals , Milk , Microwaves , Digestion , Linseed Oil , Fatty Acids
3.
Food Res Int ; 164: 112369, 2023 02.
Article in English | MEDLINE | ID: mdl-36737956

ABSTRACT

Oleogels containing less saturated and trans-fats were considered as an ideal option to replace the solid fats in foods. In this research, oleogel was fabricated by dispersing soy fiber particles (SFP) in soy oil, and further it was used in bread preparation. Effect of the particle size, particle content and the second fluid content on the formation of oleogels were evaluated, based on the appearance and rheological properties. Results showed that the suspension of SFP in soy oil (24%, w/w) could be transformed into gel-like state, upon the addition of the second fluid. The SFP based networks were dominated by the capillary force which was originated from the second fluid. The rheological properties and yield stress of the oleogels could be modulated by particle size and particle content of SFP in oil phase, as well as the second fluid content in the system. When the oleogels were applicated in bread preparation, a layered structure could be formed in the bread, indicating the possibility of replacing the solid fats in bakery products by our oleogels. Our results offered a feasibility approach for oil structuring with natural raw materials, and developed a new approach to replace the solid fats in foods.


Subject(s)
Organic Chemicals , Soybean Oil , Organic Chemicals/chemistry , Soybean Oil/chemistry , Bread , Chemical Phenomena
4.
Foods ; 12(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38231865

ABSTRACT

Perilla seeds are essential functional foods and key ingredients in traditional medicine. Herein, we investigated the variation in phytochemical profiles and antioxidant activities of twelve different perilla seeds. The seeds showed significant variations in total phenolic and flavonoid contents ranging from 16.92 to 37.23 mg GAE/g (GAE, gallic acid equivalent) and 11.6 to 19.52 mg CAE/g (CAE, catechin equivalent), respectively. LC-QqQ-MS (liquid chromatography triple quadrupole tandem mass spectrometry)-based widely targeted metabolic profiling identified a total of 975 metabolites, including 68-269 differentially accumulated metabolites (DAMs). Multivariate analyses categorized the seeds into four groups based on the seed coat and leaf colors. Most key bioactive DAMs, including flavonoids (quercetin-3'-O-glucoside, prunin, naringenin, naringenin chalcone, butin, genistin, kaempferol-3-O-rutinoside, etc.), amino acids (valine, lysine, histidine, glutamine, threonine, etc.), and vitamins (B1, B3, B6, U, etc.) exhibited the highest relative content in PL3 (brown seed, purple leaf), PL1 (white seed, green-purple leaf), and PL4 (white seed, green leaf) groups, respectively. Meanwhile, key differentially accumulated phenolic acids showed a higher relative content in PL1 and PL4 than in other groups. Both seeds exhibited high antioxidant activities, although those of PL2 (brown seed, green leaf) group seeds were the lowest. Our results may facilitate the comprehensive use of perilla seeds in food and pharmaceutical industries.

5.
Food Chem ; 390: 133200, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35580516

ABSTRACT

Mycotoxins contamination, especially aflatoxin B1 (AFB1) in edible oils, is a health hazard. Therefore, AFB1 trace analysis methods are urgently needed. Electrochemiluminescence (ECL) is a popular sensing method because of its low background interference and high sensitivity. However, existing ECL assays for AFB1 detection are based on aqueous rather than oil systems. Herein, we report a CH3NH3PbBr3 quantum dots (MAPB QDs)@SiO2-based ECL sensor for AFB1 quantification in corn oil using an organic electrolyte. The luminophore loading and stability of the MAPB QDs@SiO2 particles were significantly improved compared to those of bulky MAPB materials, resulting in an enhanced ECL response. Further, exploiting molecular imprinting technology, an ECL sensor for AFB1 detection with an ultra-low detection limit of 8.5 fg/mL was prepared. The reliability of the sensor was confirmed by comparable recoveries of corn oil samples with those obtained by high-performance liquid chromatography, indicating its potential for food safety evaluation.


Subject(s)
Biosensing Techniques , Quantum Dots , Aflatoxin B1/analysis , Biosensing Techniques/methods , Corn Oil/analysis , Electrochemical Techniques/methods , Electrolytes , Limit of Detection , Luminescent Measurements/methods , Quantum Dots/chemistry , Reproducibility of Results , Silicon Dioxide/chemistry
6.
J Sci Food Agric ; 102(12): 5495-5501, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35355275

ABSTRACT

BACKGROUND: The INFOGEST model is a standardized general in vitro digestion study, but it cannot accurately simulate the fatty acid release process of lipids in the stomach and small intestine. In this study, the internationally universal INFOGEST 2019 was used as the basic model and flaxseed oil emulsion was used as the research object. In various improvement models, the effect of fatty acid release rate on the oxidation stability of flaxseed oil was assessed by adding rabbit stomach extract and changing the order of bile salts addition. RESULTS: With the presence of rabbit gastric extract, flaxseed oil emulsion flocculation and coalescence in stomach were reduced, and the absolute value of ζ-potential increased. Moreover, the release rate of fatty acids in the small intestine increased by 12.14%. The amount of lipid oxidation product (i.e. hexanal) in the gastric and intestinal phases increased by 0.08 ppb. In addition, the fatty acid release rate in the small intestine phase increased by 5.85% and the hexanal content increased by 0.011 ppb in the digestion model of adding bile salts before adjusting the pH in the small intestine phase compared with the model of adjusting the pH first and then adding bile salts. CONCLUSION: The results obtained from this study will contribute to finding the most suitable static digestion model for simulating digestion and oxidation of lipid during lipid gastrointestinal digestion. © 2022 Society of Chemical Industry.


Subject(s)
Digestion , Linseed Oil , Animals , Bile Acids and Salts , Emulsions/chemistry , Fatty Acids , Linseed Oil/chemistry , Plant Extracts , Rabbits
7.
Food Chem ; 385: 132702, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35313199

ABSTRACT

In order to broaden the application of grape skin anthocyanin extract (GSAE) in flour products, the interaction of gliadin (Gli) and GSAE were investigated. Seven anthocyanin components from GSAE were identified by HPLC-MS2, which could form complexes with Gli having different binding rates based on UV, FTIR and HPLC analysis. The fluorescence quenching experiment showed that GSAE was capable of efficiently quenching the intrinsic fluorescence of Gli through hydrophobic interactions, and the binding parameters were near to one unit at the given temperatures. Additionally, GSAE binding changed the conformational properties of Gli, increasing α-helix and ß-turn content, but decreasing ß-sheet and irregular coil content. The molecular docking suggested that Gli possessed various binding sites bound with different anthocyanin monomers, mainly depending on hydrogen bonds and hydrophobic interactions. These findings further proved the formation of Gli-GSAE complex, indicating the potential of anthocyanins as natural colorant.


Subject(s)
Gliadin , Vitis , Anthocyanins/chemistry , Gliadin/chemistry , Molecular Docking Simulation , Plant Extracts/metabolism , Spectrum Analysis , Triticum/chemistry , Vitis/chemistry
8.
Food Chem ; 374: 131691, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34883433

ABSTRACT

The potential effects of tocopherols (100 µM in emulsions) on the physicochemical stability of whey protein isolate (WPI), soy lecithin (SL), or Tween 20 (TW) stabilized flaxseed oil (FO)-in-water emulsions were investigated. During the storage (18 days at 55 ℃), the particle size, microstructure, and multiple light scattering results showed WPI-stabilized emulsions exhibited better physical stability when tocopherols were added hydroperoxides and TBARS concentration in TW-stabilized emulsions were higher than those of SL or WPI, which were suppressed differently by tocopherols. Among homologues, δ-tocopherol was more effective in inhibiting lipid oxidation than α-tocopherol, which was related to the higher interface partitioning. Moreover, the increased interfacial tension indicated tocopherols, especially δ-tocopherol, were adsorbed on the interface and interacted with WPI or SL via hydrophobic or electrostatic interactions determined by isothermal titration calorimetry. Our results suggest tocopherols are more applicable in WPI emulsion systems to achieve steady-state delivery of ALA.


Subject(s)
Linseed Oil , Water , Emulsifying Agents , Emulsions , Tocopherols , Whey Proteins
9.
Food Chem ; 368: 130802, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34411866

ABSTRACT

This study aimed to investigate the influences of microwave (MV) exposure to flaxseed on the physicochemical stability of oil bodies (OBs) focused on the interface remodeling. The results showed that the intracellular OBs subjected to absolute rupture and then partial dispersion by protein bodies visualized by TEM following MV exposure (1-5 min; 700 W). After aqueous extraction, native flax OBs manifested excellent spherical particles with completely intact surface and wide particle size distribution (0.5-3.0 µm) examined by cryo-SEM. Upon 1-5 min of MV exposure, the defective interface integrity and beaded morphology were successively observed for flax OBs, accompanied by the impaired physical stability and rheological behavior due to the newly assembled phospholipid/protein interface. Notably, the profitable migration of phenolic compounds effectively suppressed the lipid peroxidation and protein carbonylation in flax OBs. Thus, MV exposure (1-5 min; 700 W) was unfavorable for improving the physical stability of flax OBs.


Subject(s)
Flax , Linseed Oil , Lipid Droplets , Microwaves , Phenols , Phospholipids
10.
J Sci Food Agric ; 102(2): 823-835, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34232506

ABSTRACT

BACKGROUND: The relatively inferior techno-functionality of flaxseed protein/polysaccharide complexes, especially regarding emulsifying and antioxidant activities, has partially limited their implication in the health food system. The present study aimed to investigate the effects of an atmospheric pressure plasma jet (APPJ) on the physicochemical, structural and selected techno-functional properties of flaxseed extracts. RESULTS: The results obtained showed that the full-fat and defatted flaxseed extract solutions (5 mg mL-1 ) displayed a sustainable decline in pH (-54.06%, -48.80%, P < 0.05) and zeta potential values (-29.42%, -44.28%, P < 0.05), but a gradual increase in particle sizes, as visualised by an optical microscope, during 0-120 s of APPJ treatment. Moreover, the APPJ led to initial decrease but subsequent increase in protein carbonyls and secondary lipid oxidation products, and concurrently changed the spatial conformation and microstructure of flaxseed extracts, as indicated by endogenous fluorescence properties and scanning electron microscopy (SEM). Additionally, the protein subunit remodeling and gum polysaccharides depolymerization were different for full-fat and defatted flaxseed extracts after 30 s of APPJ exposure. Importantly, the emulsifying and antioxidant activities of defatted flaxseed extract were particularly improved, as assessed by cyro-SEM and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity following 15-30 s of APPJ treatment, as a result of the changing interactions between protein and gum polysaccharides, as well as the release of specific phenolic compounds. CONCLUSION: APPJ could serve as a promising strategy for tailoring the specific techno-functionality of flaxseed extracts based on mild structural modification. © 2021 Society of Chemical Industry.


Subject(s)
Flax/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Seeds/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Atmospheric Pressure , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification
11.
J Agric Food Chem ; 69(32): 9034-9042, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34006112

ABSTRACT

The free-radical-mediated formation mechanism of polar polymeric triglycerides (TAGs) was derived based on the formation of lipid-derived radicals and the degradation of TAGs in palm oil (PO), rapeseed oil (RO), and sunflower oil (SO). The experimental spectra were simulated by alkoxyl, alkyl, and 5-dimethyl-1-pyrroline N-oxide (DMPO)-oxidized adducts. DMPO-oxidized adducts were the main radical adducts in the initial stage. Then, alkyl radical adducts became the dominating radical adducts after 12 min in PO and RO. The intensity of alkyl radical adducts was the highest in SO. Therefore, based on the bimolecular reaction, polar polymeric TAGs were mainly bonded by -C-O-O-C- in the initial stage and then by -C-C- and -C-O-C- after 30 min. Besides, according to the correlation analysis between the amounts of polar polymeric TAGs and the degradation of TAGs, the main structures of polar polymeric TAGs in PO, RO, and SO were POL-LOP, POL-OOP, and POO-OOP; OLL-LnLO, OLLn-OLnO, OOO-OLO, and OLLn-OOO; and LLL-LLO, LLL-LLL, and OLL-LLO, respectively.


Subject(s)
Cyclic N-Oxides , Plant Oils , Chromatography, High Pressure Liquid , Electron Spin Resonance Spectroscopy , Free Radicals , Spin Labels , Spin Trapping , Triglycerides
12.
J Agric Food Chem ; 69(32): 9124-9136, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-33900083

ABSTRACT

In this study, the effect of algal oil rich in docosahexaenoic acid on the mucosal injury with gut microbiota disorders caused by ceftriaxone sodium (CS) was evaluated. The results showed that algal oil treatment (500 mg kg-1 day-1) significantly reduced the levels of pro-inflammatory cytokines, including interleukin 6 , interleukin 1ß, and tumor necrosis factor α, in the colon. Algal oil restored the CS-induced gut microbiota dysbiosis by elevating some short-chain-fatty-acid-producing bacteria, e.g., Ruminococcus and Blautia. The CS-induced metabolic disorder was also regulated by algal oil, which was characterized by the modulations of tryptophan metabolism, phospholipid metabolism, and bile acid metabolism. Our results suggested that supplementation of algal oil could alleviate inflammation and promote mucosal healing, which could be a functional food ingredient to protect aganist antibiotic-induced alteration of gut microbiota and metabolic dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Anti-Bacterial Agents , Docosahexaenoic Acids , Humans , Inflammation/drug therapy , Metabolome
13.
Food Funct ; 12(5): 2090-2101, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33554990

ABSTRACT

Plant-based polyphenols are increasingly being explored as functional ingredients in emulsified food systems. In this study, the effects of sesamol on the physical and chemical stability of flaxseed oil-in-water emulsions stabilized by either phospholipids (sunflower) or proteins (whey or pea) were investigated. In the absence of sesamol, the protein-based emulsions displayed better physical stability than the phospholipid-based ones, which was related to their smaller particle diameter and higher particle charge. For the phospholipid-based emulsions, sesamol addition did not improve their physical stability, but it did inhibit lipid oxidation. In particular, it decreased the formation of secondary oxidation products, with a 65% reduction in TBAR formation compared to the control after 8 days of storage. For the protein-based emulsions, sesamol addition reduced particle aggregation and inhibited lipid oxidation, reducing the secondary oxidation products by around 85% after 19 days of storage. The inhibitory efficiency of sesamol in the pea protein-based emulsions was comparable to that in the whey protein-based ones. The effects of sesamol on the physical and chemical stability of the emulsions were related to its partitioning between the oil, water, and interfacial layers. This study suggests that adding sesamol to plant-based emulsions may improve their physical and chemical stability, thereby extending their shelf life.


Subject(s)
Benzodioxoles/pharmacology , Emulsions/chemistry , Linseed Oil/chemistry , Phenols/pharmacology , Phospholipids/chemistry , Proteins/chemistry , Water/chemistry , Antioxidants/pharmacology , Chemical Phenomena , Drug Stability , Lipid Peroxidation/drug effects , Oxidation-Reduction , Pea Proteins/chemistry , Whey Proteins/chemistry
14.
Food Chem ; 346: 128680, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33370613

ABSTRACT

Emulsified ω-3 polyunsaturated fatty acid have expanding application in different food matrix with improved water solubility while still prone to oxidation. Lotus seedpod proanthocyanidin (LSPC) was grafted to whey protein isolate (WPI) to create nature-derived antioxidant emulsifiers. 1HNMR, SDS-PAGE and multiple spectrometry showed that the structure of protein was changed after grafting. DPPH and FRAP measurements showed that WPI-LSPC conjugate (90.53 ± 1.48% of DPPH scavenging, 691.85 ± 4.54 µg/mL for FRAP assay) possessed a much better antioxidant ability than WPI (17.06 ± 3.34% of DPPH scavenging, 10.43 ± 0.26 µg/mL for FRAP assay). Ultrasonic emulsification and DSC experiments showed that WPI-LSPC conjugate were more effective at forming and stabilizing the flaxseed oil emulsions than pure WPI, with higher thermostability. Likewise, low levels of primary and secondary oxidation products were formed for the conjugate than the pure protein in O/W systems after storage, again suggesting WPI-LSPC could be used as fine antioxidant emulsifiers in oxidizing delivery systems.


Subject(s)
Anthocyanins/chemistry , Emulsions/chemistry , Lotus/embryology , Seeds/chemistry , Whey Proteins/chemistry , Antioxidants/chemistry , Linseed Oil/chemistry , Oxidation-Reduction , Seeds/metabolism , Solubility , Whey Proteins/isolation & purification
15.
Food Funct ; 11(9): 8077-8088, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32856645

ABSTRACT

Intestinal epithelial barrier dysfunction with dysbiosis of gut microbiota contributes to the occurrence and acceleration of colitis. This study aimed to evaluate the effect of flaxseed oligosaccharides (FOSs) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice and to elucidate the underlying mechanisms. UC was induced in mice by administering 2% DSS in drinking water for 8 days. Then, FOS (50 mg kg-1 d-1, 100 mg kg-1 d-1 and 200 mg kg-1 d-1) was administered by gavage for 14 days. The results showed that FOS treatment (200 mg kg-1 d-1) significantly ameliorated colitis by decreasing disease activity index (DAI), increasing colon length and improving colonic histology. FOS treatment (200 mg kg-1 d-1) down-regulated the critical markers of oxidative stresses, including malondialdehyde (MDA) and myeloperoxidase (MPO). Furthermore, FOS (200 mg kg-1 d-1) significantly suppressed the levels of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and interleukin (IL)-1ß but increased that of anti-inflammatory cytokine interleukin (IL)-10. The 16S rDNA gene high-throughput sequencing results indicated that FOS treatment increased the gut microbial diversity and inhibited the proliferation of inflammation-related bacteria such as unidentified_Clostridiales. An increase in total short-chain fatty acids (SCFAs), propionic acid and butyric acid, was also observed by FOS supplementation. FOS (200 mg kg-1d-1) also protected the intestinal barrier by increasing the protein levels of Claudin1 and Occludin. In conclusion, FOS attenuated DSS-induced colitis by modulating the gut microbiota and repairing the intestinal barrier.


Subject(s)
Colitis, Ulcerative/drug therapy , Flax/chemistry , Gastrointestinal Microbiome/drug effects , Oligosaccharides/administration & dosage , Plant Extracts/administration & dosage , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Dextran Sulfate/adverse effects , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Seeds/chemistry , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
16.
Front Microbiol ; 11: 615404, 2020.
Article in English | MEDLINE | ID: mdl-33391246

ABSTRACT

Algal oil is rich in docosahexaenoic acid (DHA) and has various health benefits against human metabolic disorders and disease. This study aimed to investigate the effects of DHA algal oil on colonic inflammation and intestinal microbiota in dextran sulfate sodium (DSS)-induced colitis mice model. Male C57BL/6 mice was induced colitis by 2.5% DSS and followed by 2 weeks of treatment with algal oil (250 or 500 mg/kg/day). The colonic inflammation was assessed by colon macroscopic damage scores, and the degree of neutrophil infiltration was evaluated by measuring tissue-associated myeloperoxidase (MPO) activity in colonic mucosa. Tight junction proteins in the colonic tissue were measured by real-time PCR and western blot. Moreover, the intestinal microbiota and shot chain fatty acids (SCFAs) were estimated by bioinformatic analysis and GC, respectively. Colonic damage due to DSS treatment was significantly ameliorated by algal oil supplementation. In addition, algal oil significantly inhibited the increases of malondialdehyde (MDA) content, MPO activity, pro-inflammatory cytokines level and tight junction proteins expression in DSS-treated mice. Furthermore, supplementation of algal oil modulated the intestinal microbiota structure in DSS induced colitis mice by increasing the proportion of the unidentified_S24_7 and decreasing the relative abundance of unidentified_Ruminococcaceae, Clostridium and Roseburia. On the analysis of SCFAs, the caecal content of acetic acid, propionic acid, isobutyric acid, buturic, and the total SCFAs showed a significant increase in algal oil-administered mice. Together, these results suggested that algal oil rich in DHA inhibited the progress of DSS-induced colitis in mice by modulating the intestinal microbiota and metabolites and repairing the intestinal barrier, which may be applied in the development of therapeutics for intestinal inflammation.

17.
Food Chem ; 301: 125207, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31377621

ABSTRACT

Recent studies have shown that the high susceptibility of flaxseed oil nanoemulsions to lipid oxidation limits their incorporation into functional foods and beverages. For this reason, the impact of various flaxseed phenolic extracts on the physical and oxidative stability of flaxseed oil nanoemulsions was investigated. Flaxseed lignan extract (FLE) and secoisolariciresinol (SECO) exhibited antioxidant activity whereas secoisolariciresinol diglucoside (SDG) and p-coumaric acid (CouA) exhibited prooxidant activity in the flaxseed oil nanoemulsions. The antioxidant potential of flaxseed phenolics in the nanoemulsions was as follows: SECO < CouA < SDG ≈ FLE. Moreover, the antioxidant/prooxidant activity of the phenolics was also related to their free radical scavenging activity and partitioning in the nanoemulsions. Our results suggested that both SECO and FLE were good plant-based antioxidants for improving the stability of flaxseed oil nanoemulsions.


Subject(s)
Butylene Glycols/chemistry , Emulsions/chemistry , Flax/chemistry , Lignans/chemistry , Linseed Oil/chemistry , Polyphenols/chemistry , Antioxidants/chemistry , Glucosides/chemistry , Hydrolysis , Nanostructures/chemistry , Oxidation-Reduction , Plant Extracts/chemistry , Water/chemistry
18.
J Pineal Res ; 67(2): e12584, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31050371

ABSTRACT

Brain insulin resistance, induced by neuroinflammation and oxidative stress, contributes to neurodegeneration, that is, processes that are associated with Aß accumulation and TAU hyperphosphorylation. Here, we tested the effect of chronic administration of melatonin (MLT) on brain insulin resistance and cognition deficits caused by a high-fat diet (HFD) in aged rats. Results showed that MLT supplementation attenuated peripheral insulin resistance and lowered hippocampal oxidative stress levels. Activated microglia and astrocytes and hippocampal levels of TNF-α in HFD-fed rats were reduced by MLT treatment. Melatonin also prevented HFD-induced increases in beta-amyloid (Aß) accumulation and TAU phosphorylation in the hippocampus. In addition, impairments of brain insulin signaling elicited by long-term HFD were restored by MLT treatment, as confirmed by ex vivo insulin stimulation. Importantly, MLT reversed HFD-induced cognitive decline as measured by a water maze test, normalized hippocampal LTP and restored CREB activity and BDNF levels as well as cholinergic neuronal activity in the hippocampus. Collectively, these findings indicate that MLT may exhibit substantial protective effects on cognition, via restoration of brain insulin signaling.


Subject(s)
Aging , Cognitive Dysfunction , Dietary Fats/adverse effects , Hippocampus , Insulin Resistance , Melatonin/pharmacology , Aging/drug effects , Aging/metabolism , Aging/pathology , Animals , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Dietary Fats/pharmacology , Female , Hippocampus/metabolism , Hippocampus/pathology , Maze Learning/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
19.
Food Res Int ; 116: 1202-1211, 2019 02.
Article in English | MEDLINE | ID: mdl-30716907

ABSTRACT

High-fat diet (HFD) consumption induces oxidative stress and microbial dysbiosis, the latter of which plays a vital role in the development of metabolic syndrome. We hypothesized that sinapic acid and resveratrol treatment might be a potential strategy to ameliorate the redox state and gut microbiota composition imbalance. In this study, rats were randomised into five groups and fed a high-fat diet supplemented with resveratrol (400 mg/kg), sinapic acid (200 mg/kg) or a combination of both polyphenols. Administration of resveratrol effectively reduced fasting blood glucose levels (p < 0.05) and increased the HDL-c levels (p < 0.05). Reactive oxygen species and malondialdehyde levels were decreased in the colon (p < 0.05), total antioxidant capacity was increased in liver (p < 0.05) by sinapic acid consumption in HFD rats. Moreover, polyphenol supplementation impacted the intestinal microbiome at different taxonomic levels by improving the proportion of butyrate producer Blautia (p < 0.05) and Dorea (p < 0.01) in the Lachaospiraceae family and inhibiting the growth of bacterial species associated with diseases and inflammation such as Bacteroides (p < 0.05) and Desulfovibrionaceaesp (p < 0.01). Spearman correlation analysis showed that some oxidative stress variables were directly correlated with changes in gut microbiota. Our findings demonstrated qualitative differences between the treatments in their abilities to alleviate HFD-induced oxidative stress and modulate the gut microbiota. These findings might be helpful to better understand the effects of bioactive constituents on nutrition for human health.


Subject(s)
Coumaric Acids/pharmacology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Resveratrol/pharmacology , Animals , Bacteria/classification , Bacteria/drug effects , Blood Glucose/drug effects , Butyrates/metabolism , Cholesterol, HDL/blood , Cholesterol, HDL/drug effects , Colon/drug effects , Dietary Supplements , Dysbiosis/drug therapy , Inflammation , Liver/drug effects , Male , Malondialdehyde/analysis , Models, Animal , Polyphenols/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species
20.
J Agric Food Chem ; 66(41): 10729-10740, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30145885

ABSTRACT

Increasing evidence has demonstrated the benefits of α-linolenic acid-rich flaxseed oil (ALA-FO) against lipid metabolism abnormality in both rodent models and humans. However, the metabolic response of FO to insulin resistance and type 2 diabetes is still inconsistent. This study aimed to explore the effect of FO on chronic high fat diet (HFD)-induced hepatic steatosis, insulin resistance, and inflammation, mainly focusing on hepatic n-3 fatty acid remodeling and endoplasmic reticulum (ER) unfolded protein response. The results showed that lard-based HFD feeding for 16 weeks (60% fat-derived calories) induced whole-body insulin resistance, lipid profile abnormality, and inflammation in mice, which was alleviated by FO in a dose-dependent manner. Moreover, FO effectively improved hepatic steatosis and insulin resistance in mice by modulating the specific location of ALA and its long-chain n-3 fatty acids across hepatic lipid fractions and enhancing insulin-stimulated phosphorylation of hepatic insulin receptor subtract-1 (IRS-1) tyrosine 632 and protein kinase B (AKT) ( p < 0.05). Importantly, the differential depositions of ALA and its long-chain n-3 fatty acids in plasma and ER membranes were observed, concomitant with the rescued ER unfolded protein response and Jun N-terminal kinase (JNK) signaling in mice liver.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Fatty Liver/drug therapy , Insulin Resistance/physiology , Linseed Oil/chemistry , alpha-Linolenic Acid/chemistry , Animals , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Humans , Inflammation/drug therapy , Insulin Receptor Substrate Proteins/metabolism , Linseed Oil/therapeutic use , Lipid Metabolism/drug effects , Liver/metabolism , MAP Kinase Kinase 4/metabolism , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , alpha-Linolenic Acid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL