Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Gut Microbes ; 16(1): 2337317, 2024.
Article in English | MEDLINE | ID: mdl-38619316

ABSTRACT

The diet during pregnancy, or antenatal diet, influences the offspring's intestinal health. We previously showed that antenatal butyrate supplementation reduces injury in adult murine offspring with dextran sulfate sodium (DSS)-induced colitis. Potential modulators of butyrate levels in the intestine include a high fiber diet or dietary supplementation with probiotics. To test this, we supplemented the diet of pregnant mice with high fiber, or with the probiotic bacteria Lactococcus lactis subspecies cremoris or Lactobacillus rhamnosus GG. We then induced chronic colitis with DSS in their adult offspring. We demonstrate that a high fiber antenatal diet, or supplementation with Lactococcus lactis subspecies cremoris during pregnancy diminished the injury from DSS-induced colitis in offspring. These data are evidence that antenatal dietary interventions impact offspring gut health and define the antenatal diet as a therapeutic modality to enhance offspring intestinal health.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lactococcus lactis , Lactococcus , Female , Pregnancy , Animals , Mice , Lactococcus lactis/genetics , Dietary Supplements , Butyrates
2.
Pediatr Res ; 92(1): 125-134, 2022 07.
Article in English | MEDLINE | ID: mdl-34616000

ABSTRACT

BACKGROUND: Maternal diet during pregnancy can impact progeny health and disease by influencing the offspring's gut microbiome and immune development. Gut microbial metabolism generates butyrate, a short-chain fatty acid that benefits intestinal health. Here we assess the effects of antenatal butyrate on the offspring's gastrointestinal health. We hypothesized that antenatal butyrate supplementation will induce protection against colitis in the offspring. METHODS: C57BL/6 mice received butyrate during pregnancy and a series of experiments were performed on their offspring. RNA sequencing was performed on colonic tissue of 3-week-old offspring. Six-8-week-old offspring were subjected to dextran sulfate sodium-induced colitis. Fecal microbiome analysis was performed on the 6-8-week-old offspring. RESULTS: Antenatal butyrate supplementation dampened transcript enrichment of inflammation-associated colonic genes and prevented colonic injury in the offspring. Antenatal butyrate increased the offspring's stool microbiome diversity and expanded the prevalence of specific gut microbes. CONCLUSIONS: Antenatal butyrate supplementation resulted in downregulation of genes in the offspring's colon that function in inflammatory signaling. In addition, antenatal butyrate supplementation was associated with protection against colitis and an expanded fecal microbiome taxonomic diversity in the offspring. IMPACT: Dietary butyrate supplementation to pregnant mice led to downregulation of colonic genes involved in inflammatory signaling and cholesterol synthesis, changes in the fecal microbiome composition of the offspring, and protection against experimentally induced colitis in the offspring. These data support the mounting evidence that the maternal diet during pregnancy has enduring effects on the offspring's long-term health and disease risk. Although further investigations are needed to identify the mechanism of butyrate's effects on fetal gut development, the current study substantiates the approach of dietary intervention during pregnancy to optimize the long-term gastrointestinal health of the offspring.


Subject(s)
Butyrates , Colitis , Animals , Butyrates/adverse effects , Colitis/chemically induced , Colitis/prevention & control , Cytoprotection , Dietary Supplements , Female , Mice , Mice, Inbred C57BL , Pregnancy
3.
PLoS One ; 9(6): e99042, 2014.
Article in English | MEDLINE | ID: mdl-24905458

ABSTRACT

BACKGROUND: Gastrointestinal barrier immaturity predisposes preterm infants to necrotizing enterocolitis (NEC). Intraepithelial lymphocytes (IEL) bearing the unconventional T cell receptor (TCR) γδ (γδ IEL) maintain intestinal integrity and prevent bacterial translocation in part through production of interleukin (IL) 17. OBJECTIVE: We sought to study the development of γδ IEL in the ileum of human infants and examine their role in NEC pathogenesis. We defined the ontogeny of γδ IEL proportions in murine and human intestine and subjected tcrδ-/- mice to experimental gut injury. In addition, we used polychromatic flow cytometry to calculate percentages of viable IEL (defined as CD3+ CD8+ CD103+ lymphocytes) and the fraction of γδ IEL in surgically resected tissue from infants with NEC and gestational age matched non-NEC surgical controls. RESULTS: In human preterm infants, the proportion of IEL was reduced by 66% in 11 NEC ileum resections compared to 30 non-NEC controls (p<0.001). While γδ IEL dominated over conventional αß IEL early in gestation in mice and in humans, γδ IEL were preferential decreased in the ileum of surgical NEC patients compared to non-NEC controls (50% reduction, p<0.05). Loss of IEL in human NEC was associated with downregulation of the Th17 transcription factor retinoic acid-related orphan nuclear hormone receptor C (RORC, p<0.001). TCRδ-deficient mice showed increased severity of experimental gut injury (p<0.05) with higher TNFα expression but downregulation of IL17A. CONCLUSION: Complimentary mouse and human data suggest a role of γδ IEL in IL17 production and intestinal barrier production early in life. Specific loss of the γδ IEL fraction may contribute to NEC pathogenesis. Nutritional or pharmacological interventions to support γδ IEL maintenance in the developing small intestine could serve as novel strategies for NEC prevention.


Subject(s)
Enterocolitis, Necrotizing/immunology , Enterocolitis, Necrotizing/surgery , Infant, Premature/immunology , Intestine, Small/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocyte Subsets/immunology , Animals , Cells, Cultured , Enterocolitis, Necrotizing/genetics , Enterocolitis, Necrotizing/pathology , Female , Gene Expression Regulation , Humans , Infant, Newborn , Infant, Premature/growth & development , Interleukin-17/genetics , Interleukin-17/immunology , Intestine, Small/growth & development , Intestine, Small/pathology , Intestine, Small/surgery , Male , Mice , Mice, Inbred C57BL , Occludin/genetics , Receptors, Antigen, T-Cell, gamma-delta/analysis , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/pathology
SELECTION OF CITATIONS
SEARCH DETAIL