Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Inherit Metab Dis ; 45(6): 1118-1129, 2022 11.
Article in English | MEDLINE | ID: mdl-35778950

ABSTRACT

Our aim was to study the effect of secondary carnitine deficiency (SCD) and carnitine supplementation on important outcome measures for persons with medium-chain Acyl-CoA dehydrogenase deficiency (MCADD). We performed a large retrospective observational study using all recorded visits of persons with MCADD in the University Medical Center Groningen, the Netherlands, between October 1994 and October 2019. Frequency and duration of acute unscheduled preventive hospital visits, exercise tolerance, fatigue, and muscle pain were considered important clinical outcomes and were studied in relation to (acyl)carnitine profile and carnitine supplementation status. The study encompassed 1228 visits of 93 persons with MCADD. >60% had SCD during follow-up. This included only persons with severe MCADD. Carnitine supplementation and SCD were unrelated to the frequency and duration of the acute unscheduled preventive hospital visits (P > 0.05). The relative risk for fatigue, muscle ache, or exercise intolerance was equal between persons with and without SCD (RR 1.6, 95% CI 0.48-5.10, P = 0.4662). No episodes of metabolic crisis were recorded in non-carnitine-supplemented persons with MCADD and SCD. In some persons with MCADD, SCD resolved without carnitine supplementation. There is absence of real-world evidence in favor of routine carnitine analysis and carnitine supplementation in the follow-up of persons with MCADD.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Lipid Metabolism, Inborn Errors , Humans , Acyl-CoA Dehydrogenase , Lipid Metabolism, Inborn Errors/metabolism , Retrospective Studies
2.
Mol Genet Metab Rep ; 31: 100873, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782614

ABSTRACT

Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in HADHB. LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks. Here, we describe a newborn with isolated LCKAT deficiency, presenting with neonatal-onset cardiomyopathy, rhabdomyolysis, hypoglycemia and lactic acidosis. Bi-allelic 185G > A (p.Arg62His) and c1292T > C (p.Phe431Ser) mutations were found in HADHB. Enzymatic analysis in both lymphocytes and cultured fibroblasts revealed LCKAT deficiency with a normal long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD, also part of MTP) enzyme activity. Clinically, the patient showed recurrent cardiomyopathy, which was monitored by speckle tracking echocardiography. Subsequent treatment with special low-fat formula, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT) and ketone body therapy in (sodium-D,L-3-hydroxybutyrate) was well tolerated and resulted in improved carnitine profiles and cardiac function. Resveratrol, a natural polyphenol that has been shown to increase fatty acid oxidation, was also considered as a potential treatment option but showed no in vitro benefits in the patient's fibroblasts. Even though our patient deceased at the age of 13 months, early diagnosis and prompt initiation of dietary management with addition of sodium-D,L-3-hydroxybutyrate may have contributed to improved cardiac function and a much longer survival when compared to the previously reported cases of isolated LCKAT-deficiency.

3.
J Inherit Metab Dis ; 44(3): 693-704, 2021 05.
Article in English | MEDLINE | ID: mdl-33332610

ABSTRACT

There is paucity of literature on dietary treatment in glycogen storage disease (GSD) type IV and formal guidelines are not available. Traditionally, liver transplantation was considered the only treatment option for GSD IV. In light of the success of dietary treatment for the other hepatic forms of GSD, we have initiated this observational study to assess the outcomes of medical diets, which limit the accumulation of glycogen. Clinical, dietary, laboratory, and imaging data for 15 GSD IV patients from three centres are presented. Medical diets may have the potential to delay or prevent liver transplantation, improve growth and normalize serum aminotransferases. Individual care plans aim to avoid both hyperglycaemia, hypoglycaemia and/or hyperketosis, to minimize glycogen accumulation and catabolism, respectively. Multidisciplinary monitoring includes balancing between traditional markers of metabolic control (ie, growth, liver size, serum aminotransferases, glucose homeostasis, lactate, and ketones), liver function (ie, synthesis, bile flow and detoxification of protein), and symptoms and signs of portal hypertension.


Subject(s)
Dietary Supplements , Glycogen Storage Disease Type IV/diet therapy , Glycogen/metabolism , Liver/metabolism , Adolescent , Adult , Biomarkers , Child , Child, Preschool , Female , Glycogen Storage Disease Type IV/pathology , Humans , Infant , Interdisciplinary Communication , Liver/pathology , Liver Transplantation , Male , Treatment Outcome , Young Adult
4.
J Inherit Metab Dis ; 42(1): 159-168, 2019 01.
Article in English | MEDLINE | ID: mdl-30740737

ABSTRACT

BACKGROUND: Patients with very long chain acyl-CoA dehydrogenase deficiency (VLCADD), a long chain fatty acid oxidation disorder, are traditionally treated with a long chain triglyceride (LCT) restricted and medium chain triglyceride (MCT) supplemented diet. Introduction of VLCADD in newborn screening (NBS) programs has led to the identification of asymptomatic newborns with VLCADD, who may have a more attenuated phenotype and may not need dietary adjustments. OBJECTIVE: To define dietary strategies for individuals with VLCADD based on the predicted phenotype. METHOD: We evaluated long-term dietary histories of a cohort of individuals diagnosed with VLCADD identified before the introduction of VLCADD in NBS and their beta-oxidation (LC-FAO) flux score (rate of oleate oxidation) in cultured skin fibroblasts in relation to the clinical outcome. Based on these results a dietary strategy is proposed. RESULTS: Sixteen individuals with VLCADD were included. One had an LC-FAO flux score >90%, was not on a restricted diet and is asymptomatic to date. Four patients had an LC-FAO flux score <10%, and significant VLCADD related symptoms despite the use of strict diets including LCT restriction, MCT supplementation and nocturnal gastric drip feeding. Patients with an LC-FAO flux score between 10 and 90% (n = 11) showed a more heterogeneous phenotype. CONCLUSIONS: This study shows that a strict diet cannot prevent poor clinical outcome in severely affected patients and that the LC-FAO flux is a good predictor of clinical outcome in individuals with VLCADD identified before its introduction in NBS. Hereby, we propose an individualized dietary strategy based on the LC-FAO flux score.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase/deficiency , Congenital Bone Marrow Failure Syndromes/drug therapy , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondrial Diseases/drug therapy , Muscular Diseases/drug therapy , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Congenital Bone Marrow Failure Syndromes/metabolism , Diet , Fatty Acids/administration & dosage , Female , Humans , Infant, Newborn , Lipid Metabolism, Inborn Errors/metabolism , Male , Mitochondrial Diseases/metabolism , Muscular Diseases/metabolism , Neonatal Screening/methods , Phenotype , Triglycerides/administration & dosage
5.
J Inherit Metab Dis ; 37(5): 783-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24623196

ABSTRACT

The objective of this study was to test whether macromolecule oxidative damage and altered enzymatic antioxidative defenses occur in patients with medium-chain acyl coenzyme A dehydrogenase (MCAD) deficiency. We performed a cross-sectional observational study of in vivo parameters of lipid and protein oxidative damage and antioxidant defenses in asymptomatic, nonstressed, MCAD-deficient patients and healthy controls. Patients were subdivided into three groups based on therapy: patients without prescribed supplementation, patients with carnitine supplementation, and patients with carnitine plus riboflavin supplementation. Compared with healthy controls, nonsupplemented MCAD-deficient patients and patients receiving carnitine supplementation displayed decreased plasma sulfhydryl content (indicating protein oxidative damage). Increased erythrocyte superoxide dismutase (SOD) activity in patients receiving carnitine supplementation probably reflects a compensatory mechanism for scavenging reactive species formation. The combination of carnitine plus riboflavin was not associated with oxidative damage. These are the first indications that MCAD-deficient patients experience protein oxidative damage and that combined supplementation of carnitine and riboflavin may prevent these biochemical alterations. Results suggest involvement of free radicals in the pathophysiology of MCAD deficiency. The underlying mechanisms behind the increased SOD activity upon carnitine supplementation need to be determined. Further studies are necessary to determine the clinical relevance of oxidative stress, including the possibility of antioxidant therapy.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Antioxidants/metabolism , Lipid Metabolism, Inborn Errors/metabolism , Oxidative Stress , Proteins/metabolism , Acyl-CoA Dehydrogenase/metabolism , Adolescent , Adult , Carnitine/therapeutic use , Child , Child, Preschool , Cross-Sectional Studies , Erythrocytes/metabolism , Female , Humans , Infant , Infant, Newborn , Lipid Metabolism/genetics , Male , Riboflavin/therapeutic use , Vitamins/therapeutic use , Young Adult
6.
Orphanet J Rare Dis ; 9: 7, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24422943

ABSTRACT

Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with protein substitution with all amino acids except the amino acids prior to the metabolic block and enriched with the amino acid that has become essential by the enzymatic defect. For some aminoacidopathies, supplementation of one or two amino acids, that have not become essential by the enzymatic defect, has been suggested. This so-called single amino acid supplementation can serve different treatment objectives, but evidence is limited. The aim of the present article is to provide a systematic review on the reasons for applications of single amino acid supplementation in aminoacidopathies treated with natural protein restriction and synthetic amino acid mixtures.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acids/therapeutic use , Dietary Supplements , Humans
SELECTION OF CITATIONS
SEARCH DETAIL