Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101876, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365463

ABSTRACT

Vitamin D is mainly produced in the skin (cholecalciferol) by sun exposure while a fraction of it is obtained from dietary sources (ergocalciferol). Vitamin D is further processed to 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D (calcitriol) in the liver and kidneys, respectively. Calcitriol is the active form which mediates the actions of vitamin D via vitamin D receptor (VDR) which is present ubiquitously. Defect at any level in this pathway leads to vitamin D deficient or resistant rickets. Nutritional vitamin D deficiency is the leading cause of rickets and osteomalacia worldwide and responds well to vitamin D supplementation. Inherited disorders of vitamin D metabolism (vitamin D-dependent rickets, VDDR) account for a small proportion of calcipenic rickets/osteomalacia. Defective 1α hydroxylation of vitamin D, 25 hydroxylation of vitamin D, and vitamin D receptor result in VDDR1A, VDDR1B and VDDR2A, respectively whereas defective binding of vitamin D to vitamin D response element due to overexpression of heterogeneous nuclear ribonucleoprotein and accelerated vitamin D metabolism cause VDDR2B and VDDR3, respectively. Impaired dietary calcium absorption and consequent calcium deficiency increases parathyroid hormone in these disorders resulting in phosphaturia and hypophosphatemia. Hypophosphatemia is a common feature of all these disorders, though not a sine-qua-non and leads to hypomineralisation of the bone and myopathy. Improvement in hypophosphatemia is one of the earliest markers of response to vitamin D supplementation in nutritional rickets/osteomalacia and the lack of such a response should prompt evaluation for inherited forms of rickets/osteomalacia.


Subject(s)
Familial Hypophosphatemic Rickets , Osteomalacia , Rickets , Vitamin D Deficiency , Humans , Calcitriol , Receptors, Calcitriol , Osteomalacia/drug therapy , Osteomalacia/etiology , Osteomalacia/metabolism , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Rickets/drug therapy , Rickets/etiology , Vitamin D/therapeutic use , Vitamin D/metabolism , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL