Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioelectrochemistry ; 153: 108468, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37224602

ABSTRACT

The neurogenic differentiation of human mesenchymal stem cells (hMSCs) has been substantially handicapped with the choice of chemical or electrical stimulations for long durations. We demonstrate an innovative strategy of stimulation with <1.0 V for <200 s to achieve hMSCs differentiation towards neural progenitor cells within 24 h and their commitment towards differentiation to neurons on day 3 with the use of three-electrode electrostimulation. Stimulated hMSCs (ES hMSCs) showed elevated expression of neural-specific markers and mitochondrial membrane potential. A voltage bias of ±0.5 V and ±1.0 V did not show any adverse effect on cell viability and proliferation, whereas cells stimulated with ±1.5 V showed an upsurge in the dead cell populations. With the progression of time after stimulation, a rise in mitochondrial membrane potential (MMP, ΔΨ M) was observed in the ES hMSCs and thereby generating intracellular reactive oxygen species (ROS), acting as a key messenger to induce neuronal differentiation. The stratagem may provide insightful handles to circumvent neurodifferentiation impediments, a focal issue for regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Neurons , Humans , Cell Differentiation , Electric Stimulation , Reactive Oxygen Species/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL