Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Lasers Med Sci ; 35(2): 413-420, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31273571

ABSTRACT

The aim of the present study was to investigate the therapeutic effects of 660-nm and 880-nm photobiomodulation therapy (PBMT) following inferior alveolar nerve (IAN) crush injury. Following the nerve crush injuries of IAN, 36 Wistar rats were randomly divided into three groups as follows: (1) control, (2) 660-nm PBMT, and (3) 808-nm PBMT (GaAlAs laser, 100 J/cm2, 70 mW, 0.028-cm2 beam). PBMT was started immediately after surgery and performed once every 3 days during the postoperative period. At the end of the 30-day treatment period, histopathological and histomorphometric evaluations of tissue sections were made under a light and electron microscope. The ratio of the inner axonal diameter to the total outer axonal diameter (g-ratio) and the number of axons per square micrometer were evaluated. In the 808-nm PBMT group, the number of nerve fibers with suboptimal g-ratio ranges of 0-0.49 (p < 0.001) is significantly lower than expected, which indicates better rate of myelinization in the 808-nm PBMT group. The number of axons per square micrometer was significantly higher in the 808-nm PBMT group when compared with the control (p < 0.001) and 660-nm PBMT group (p = 0.010). The data and the histopathological investigations suggest that the PBMT with the 808-nm wavelength along with its settings was able to enhance IAN regeneration after nerve crush injury.


Subject(s)
Crush Injuries/radiotherapy , Light , Low-Level Light Therapy , Mandibular Nerve/radiation effects , Nerve Crush , Nerve Regeneration/radiation effects , Animals , Axons/pathology , Axons/radiation effects , Female , Lasers, Semiconductor , Mandibular Nerve/pathology , Rats, Wistar
2.
J Craniofac Surg ; 30(7): 1994-1998, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31232987

ABSTRACT

The aim of the present study was to evaluate the effects of low-level laser therapy (LLLT) and biphasic alloplastic bone graft material on diabetic bone healing. Induction of diabetes was performed in 14 male Sprague-Dawley rats by intraperitoneal injection of a 50 mg/kg dose of streptozotocin. Two bilaterally symmetrical non-critical-sized bone defects were created in the parietal bones in each rat. Right defects were filled with biphasic alloplastic bone graft. Rats were randomly divided into 2 groups, with 1 group receiving 10 sessions of LLLT (GaAlAs, 78.5 J/cm, 100mW, 0.028 cm beam). The LLLT was started immediately after surgery and once every 3 days during postoperative period. At the end of treatment period, new bone formation and osteoblast density were determined using histomorphometry. Empty (control), graft-filled, LLLT-treated and both graft-filled and LLLT-treated bone defects were compared. New bone formation was higher in the graft treatment samples compared with the control (P = 0.009) and laser samples (P = 0.029). In addition, graft-laser combination treatment samples revealed higher bone formation than control (P = 0.008) and laser (P = 0.026) samples. Osteoblast density was significantly higher in the laser treatment (P <0.001), graft treatment (P = 0.001) and graft-laser combination treatment (P <0.001) samples than control samples. In addition, significantly higher osteoblast density was observed in the graft-laser combination treatment samples compared to the graft treatment samples (P = 0.005). The LLLT was effective to stimulate osteoblastogenesis but failed to increase bone formation. Graft augmentation for treatment of bone defects seems essential for proper bone healing in diabetes, regeneration may be supported by the LLLT to enhance osteoblastogenesis.


Subject(s)
Diabetes Complications/therapy , Low-Level Light Therapy , Animals , Bone Regeneration/drug effects , Bone Transplantation , Diabetes Mellitus , Male , Osteoblasts , Osteogenesis , Parietal Bone , Rats , Rats, Sprague-Dawley , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL