Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 273: 116179, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38460200

ABSTRACT

It has been shown that exposure to hexavalent Chromium, Cr (Ⅵ), via nasal cavity can have neurotoxicological effects and induces behavioral impairment due to the fact that blood brain barrier (BBB) does not cover olfactory bulb. But whether Cr (Ⅵ) can cross the BBB and have a toxicological effects in central nervous system (CNS) remains unclear. Therefore, we investigated the effects of Cr (Ⅵ) on mice treated with different concentrations and exposure time (14 days and 28 days) of Cr (Ⅵ) via intraperitoneal injection. Results revealed that Cr accumulated in hypothalamus (HY) in a timely dependent manner. Much more severer neuropathologies was observed in the group of mice exposed to Cr (Ⅵ) for 28 days than that for 14 days. Gliosis, neuronal morphological abnormalities, synaptic degeneration, BBB disruption and neuronal number loss were observed in HY. In terms of mechanism, the Nrf2 related antioxidant stress signaling dysfunction and activated NF-κB related inflammatory pathway were observed in HY of Cr (Ⅵ) intoxication mice. And these neuropathologies and signaling defects appeared in a timely dependent manner. Taking together, we proved that Cr (Ⅵ) can enter HY due to weaker BBB in HY and HY is the most vulnerable CNS region to Cr (Ⅵ) exposure. The concentration of Cr in HY increased along with time. The accumulated Cr in HY can cause BBB disruption, neuronal morphological abnormalities, synaptic degeneration and gliosis through Nrf2 and NF-κB signaling pathway. This finding improves our understanding of the neurological dysfunctions observed in individuals who have occupational exposure to Cr (Ⅵ), and provided potential therapeutic targets to treat neurotoxicological pathologies induced by Cr (Ⅵ).


Subject(s)
Blood-Brain Barrier , NF-kappa B , Mice , Animals , Blood-Brain Barrier/metabolism , NF-kappa B/metabolism , Chromium/toxicity , Gliosis , NF-E2-Related Factor 2/metabolism , Disease Models, Animal , Hypothalamus/metabolism
2.
Article in English | MEDLINE | ID: mdl-35368760

ABSTRACT

Methamphetamine (METH) can cause kidney dysfunction. Luteolin is a flavonoid compound that can alleviate kidney dysfunction. We aimed to observe the renal-protective effect of luteolin on METH-induced nephropathies and to clarify the potential mechanism of action. The mice were treated with METH (1.0-20.0 mg/kg/d bodyweight) for 14 consecutive days. Morphological studies, renal function, and podocyte specific proteins were analyzed in the chronic METH model in vivo. Cultured podocytes were used to support the protective effects of luteolin on METH-induced podocyte injury. We observed increased levels of p-Tau and p-GSK3ß and elevated glomerular pathology, renal dysfunction, renal fibrosis, foot process effacement, macrophage infiltration, and podocyte specific protein loss. Inhibition of GSK3ß activation protected METH-induced kidney injury. Furthermore, luteolin could obliterate glomerular pathologies, inhibit podocyte protein loss, and stop p-Tau level increase. Luteolin could also abolish the METH-induced podocyte injury by inactivating GSK3ß-p-Tau in cultured podocytes. These results indicate that luteolin might ameliorate methamphetamine-induced podocyte pathology through GSK3ß-p-Tau axis.

3.
Oxid Med Cell Longev ; 2022: 8400876, 2022.
Article in English | MEDLINE | ID: mdl-35387263

ABSTRACT

Chronic and long-term methamphetamine (METH) abuse is bound to cause damages to multiple organs and systems, especially the central nervous system (CNS). Icariside II (ICS), a type of flavonoid and one of the main active ingredients of the traditional Chinese medicine Epimedium, exhibits a variety of biological and pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. However, whether ICS could protect against METH-induced neurotoxicity remains unknown. Based on a chronic METH abuse mouse model, we detected the neurotoxicity after METH exposure and determined the intervention effect of ICS and the potential mechanism of action. Here, we found that METH could trigger neurotoxicity, which was characterized by loss of dopaminergic neurons, depletion of dopamine (DA), activation of glial cells, upregulation of α-synuclein (α-syn), abnormal dendritic spine plasticity, and dysfunction of motor coordination and balance. ICS treatment, however, alleviated the above-mentioned neurotoxicity elicited by METH. Our data also indicated that when ICS combated METH-induced neurotoxicity, it was accompanied by partial correction of the abnormal Kelch 2 like ECH2 associated protein 1 (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and oxidative stress response. In the presence of ML385, an inhibitor of Nrf2, ICS failed to activate the Nrf2-related protein expression and reduce the oxidative stress response. More importantly, ICS could not attenuate METH-induced dopaminergic neurotoxicity and behavioral damage when the Nrf2 was inhibited, suggesting that the neuroprotective effect of ICS on METH-induced neurotoxicity was dependent on activating the Keap1-Nrf2 pathway. Although further research is needed to dig deeper into the actual molecular targets of ICS, it is undeniable that the current results imply the potential value of ICS to reduce the neurotoxicity of METH abusers.


Subject(s)
Methamphetamine , Neurotoxicity Syndromes , Animals , Mice , Dopamine/metabolism , Flavonoids/therapeutic use , Kelch-Like ECH-Associated Protein 1/metabolism , Methamphetamine/toxicity , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , NF-E2-Related Factor 2/metabolism
4.
Front Pharmacol ; 12: 625074, 2021.
Article in English | MEDLINE | ID: mdl-33776766

ABSTRACT

Often associated with sexual dysfunction (SD), chronic stress is the main contributing risk factor for the pathogenesis of depression. Radix bupleuri had been widely used in traditional Chinese medicine formulation for the regulation of emotion and sexual activity. As the main active component of Radix bupleuri, saikosaponin D (SSD) has a demonstrated antidepressant effect in preclinical studies. Herein, we sought to investigate the effect of SSD to restore sexual functions in chronically stressed mice and elucidate the potential brain mechanisms that might underly these effects. SSD was gavage administered for three weeks during the induction of chronic mild stress (CMS), and its effects on emotional and sexual behaviors in CMS mice were observed. The medial posterodorsal amygdala (MePD) was speculated to be involved in the manifestation of sexual dysfunctions in CMS mice. Our results revealed that SSD not only alleviated CMS-induced depressive-like behaviors but also rescued CMS-induced low sexual motivation and poor sexual performance. CMS destroyed astrocytes and activated microglia in the MePD. SSD treatment reversed the changes in glial pathology and inhibited neuroinflammatory and oxidative stress in the MePD of CMS mice. The neuronal morphological and functional deficits in the MePD were also alleviated by SSD administration. Our results provide insights into the central mechanisms involving the brain associated with sexual dysfunction. These findings deepen our understanding of SSD in light of the psychopharmacology of stress and sexual disorders, providing a theoretical basis for its potential clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL