Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Affiliation country
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2713-2724, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282931

ABSTRACT

The grey correlation-TOPSIS method was used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos, and the Fourier transform near-infrared(NIR) and mid-infrared(MIR) spectroscopy was applied to establish the identification model of origin herbs of Lonicerae Japonicae Flos by combining chemometrics and spectral fusion strategies. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, secoxyloganin, isoquercitrin, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C in six origin herbs of Lonicerae Japonicae Flos was determined by high-performance liquid chromatography(HPLC), and their quality was evaluated by the grey correlation-TOPSIS method. The Fourier transform NIR and MIR spectra of six origin herbs of Lonicerae Japonicae Flos(Lonicera japonica, L. macranthoides, L. hypoglauca, L. fulvotomentosa, L. confuse, and L. similis) were collected. At the same time, principal component analysis(PCA), support vector machine(SVM), and spectral data fusion technology were combined to determine the optimal identification method for the origin herbs of Lonicerae Japonicae Flos. There were differences in the quality of the origin herbs of Lonicerae Japonicae Flos. Specifically, there were significant differences between L. japonica and the other five origin herbs(P<0.01). The quality of L. similis was significantly different from that of L. fulvotomentosa, L. macranthoides, and L. hypoglauca(P=0.008, 0.027, 0.01), and there were also significant differences in the quality of L. hypoglauca and L. confuse(P=0.001). The PCA and SVM 2D models based on a single spectrum could not be used for the effective identification of the origin herbs of Lonicerae Japonicae Flos. The data fusion combined with the SVM model further improved the identification accuracy, and the identification accuracy of the mid-level data fusion reached 100%. Therefore, the grey correlation-TOPSIS method can be used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos. Based on the infrared spectral data fusion strategy and SVM chemometric model, it can accurately identify the origin herbs of Lonicerae Japonicae Flos, which can provide a new method for the origin identification of medicinal materials of Lonicerae Japonicae Flos.


Subject(s)
Drugs, Chinese Herbal , Lonicera , Drugs, Chinese Herbal/chemistry , Flowers/chemistry , Quality Control , Lonicera/chemistry , Chromatography, High Pressure Liquid/methods
2.
J Ethnopharmacol ; 278: 114293, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34102270

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paris L. (Liliaceae) consisted of 33 species, of which the study focused on Paris polyphylla Smith, P. polyphylla var. chinensis (Franch.) Hara, and P. polyphylla Smith var. yunnanensis (Franch.) Hand. -Mazz. Due of course to the good effects of analgesia and hemostasis, it was traditionally used to treat trauma by folk herbalists. AIM OF THIS REVIEW: This study summarized the traditional uses, distributions, phytochemical components, pharmacological properties, and toxicity evaluation of the genus Paris, and reviewed the economic value of cultivate P. polyphylla. This aim was that of providing a new and comprehensive recognition of these medicinal plants for the further utilization of Paris plants. MATERIALS AND METHODS: The literature about traditional and folk uses of genus Paris was obtained from Duxiu Search, and China National Knowledge Infrastructure (CNKI). The other literature about genus Paris was searched online on Web of Science, PubMed, Google Scholar, Baidu Scholar, Scifinder database, and Springer research. The Scientific Database of China Plant Species (DCP) (http://db.kib.ac.cn/Default.aspx) databases were used to check the scientific names and provide species, varieties, and distribution of genus Paris. The botany studies information of genus Paris was available online from Plant Plus of China (www.iplant.cn). All the molecular structures of chemical compounds displayed in the text were produced by ChemBioDraw Ultra 14.0. RESULTS: The plants of genus Paris, containing about 33 species and 15 varieties, are mainly distributed in Southwest China (Yunnan, Sichuan, and Guizhou provinces). More than 320 chemical components have been isolated from genus Paris since 2020, including steroidal saponins, C-21 steroids, phytosterols, insect hormones, pentacyclic triterpenes, flavonoids, and other compounds. Arrays of pharmacological investigations revealed that compounds and extracts of Paris species possess a wide spectrum of pharmacological effects, such as antitumor, cytotoxic, antimicrobial, antifungal, hemostatic, and anti-inflammatory activities. The studies about toxicity evaluation suggested that Rhizome Paridis had slight liver toxicity. CONCLUSIONS: The dried rhizomes of P. polyphylla, P. polyphylla var. chinensis, and P. polyphylla var. yunnanensis were used to treat wound, bleeding, and stomachache, etc. in folk medicine. Phytochemistry researches showed that different species had pretty similarities especially in terms of chemical constituents. Pharmacological studies witnessed that Rhizome Paridis has various activities. Among these activities, steroidal saponins were the main active ingredients. Furthermore, an important aspect responsible for increasing interest in genus Paris is the use of antifertility-nonhormonal contraceptives by women. Also, the development of TCM (Traditional Chinese medicine) planting industry can improve the income of ethnic minorities and promote economic development.


Subject(s)
Liliaceae/chemistry , Phytochemicals , Phytotherapy , Plants, Medicinal/chemistry , Humans , Medicine, Traditional
SELECTION OF CITATIONS
SEARCH DETAIL