Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Brain Topogr ; 31(6): 985-1000, 2018 11.
Article in English | MEDLINE | ID: mdl-30032347

ABSTRACT

We investigated the flexible modulation of undirected functional connectivity (uFC) of brain pathways during simple uni-manual responding. Two questions were central to our interests: (1) does response hand (dominant vs. non-dominant) differentially modulate connectivity and (2) are these effects related to responding under varying motor sets. fMRI data were acquired in twenty right-handed volunteers who responded with their right (dominant) or left (non-dominant) hand (blocked across acquisitions). Within acquisitions, the task oscillated between periodic responses (promoting the emergence of motor sets) or randomly induced responses (disrupting the emergence of motor sets). Conjunction analyses revealed eight shared nodes across response hand and condition, time series from which were analyzed. For right hand responses connectivity of the M1 ←→ Thalamus and SMA ←→ Parietal pathways was more significantly modulated during periodic responding. By comparison, for left hand responses, connectivity between five network pairs (including M1 and SMA, insula, basal ganglia, premotor cortex, parietal cortex, thalamus) was more significantly modulated during random responding. uFC analyses were complemented by directed FC based on multivariate autoregressive models of times series from the nodes. These results were complementary and highlighted significant modulation of dFC for SMA → Thalamus, SMA → M1, basal ganglia → Insula and basal ganglia → Thalamus. The results demonstrate complex effects of motor organization and task demand and response hand on different connectivity classes of fMRI data. The brain's sub-networks are flexibly modulated by factors related to motor organization and/or task demand, and our results have implications for assessment of medical conditions associated with motor dysfunction.


Subject(s)
Brain/physiology , Hand , Motor Activity/physiology , Adolescent , Basal Ganglia/physiology , Brain Mapping/methods , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging/methods , Male , Motor Cortex/physiology , Neural Pathways/physiology , Parietal Lobe/physiology , Thalamus/physiology , Young Adult
2.
Hum Brain Mapp ; 37(7): 2557-70, 2016 07.
Article in English | MEDLINE | ID: mdl-27145923

ABSTRACT

Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals [dynamic causal modeling (DCM)] to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian model selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus â†’ dPFC) and descending (dPFC â†’ thalamus) pathways. However, modulation of these pathways was asymmetric: while positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC â†’ thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus â†’ dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. Hum Brain Mapp 37:2557-2570, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Attention/physiology , Frontal Lobe/physiology , Thalamus/physiology , Adolescent , Bayes Theorem , Brain Mapping , Child , Female , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neuropsychological Tests , Psychology, Adolescent , Thalamus/diagnostic imaging , Young Adult
3.
Neuroimage ; 58(1): 234-41, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21729757

ABSTRACT

Adolescent offspring of schizophrenia patients (HR-S) are an important group in whom to study impaired brain function and structure, particularly of the frontal cortices. Studies of working memory have suggested behavioral deficits and fMRI-measured hypoactivity in fronto-parietal regions in these subjects. Independent structural MRI (sMRI) studies have suggested exaggerated frontal gray matter decline. Therefore the emergent view is that fronto-parietal deficits in function and structure characterize HR-S. However, it is unknown if fronto-parietal sub-regions in which fMRI-measured hypo-activity might be observed are precisely those regions of the cortex in which gray matter deficits are also observed. To investigate this question we conducted conjoint analyses of fronto-parietal function and structure in HR-S (n=19) and controls (n=24) with no family history of psychoses using fMRI data during a continuous working memory task (2 back), and sMRI collected in the same session. HR-S demonstrated significantly reduced BOLD activation in left dorso-lateral prefrontal cortex (BA 9/46) and bilateral parietal cortex (BA 7/40). Sub-regions of interest were created from the significant fronto-parietal functional clusters. Analyses of gray matter volume from volume-modulated gray matter segments in these clusters did not reveal significant gray matter differences between groups. The results suggest that functional impairments in adolescent HR-S can be independent of impairments in structure, suggesting that the relationship between impaired function and structure is complex. Further studies will be needed to more closely assess whether impairments in function and structure provide independent or interacting pathways of vulnerability in this population.


Subject(s)
Frontal Lobe/physiology , Hypothalamus/physiology , Memory, Short-Term/physiology , Parietal Lobe/physiology , Schizophrenia/genetics , Adolescent , Child , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Psychomotor Performance/physiology , Reaction Time , Schizophrenic Psychology , Young Adult
4.
Neuroimage ; 54(4): 2973-82, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21073970

ABSTRACT

BACKGROUND: The powerful emotion inducing properties of music are well-known, yet music may convey differing emotional responses depending on environmental factors. We hypothesized that neural mechanisms involved in listening to music may differ when presented together with visual stimuli that conveyed the same emotion as the music when compared to visual stimuli with incongruent emotional content. METHODS: We designed this study to determine the effect of auditory (happy and sad instrumental music) and visual stimuli (happy and sad faces) congruent or incongruent for emotional content on audiovisual processing using fMRI blood oxygenation level-dependent (BOLD) signal contrast. The experiment was conducted in the context of a conventional block-design experiment. A block consisted of three emotional ON periods, music alone (happy or sad music), face alone (happy or sad faces), and music combined with faces where the music excerpt was played while presenting either congruent emotional faces or incongruent emotional faces. RESULTS: We found activity in the superior temporal gyrus (STG) and fusiform gyrus (FG) to be differentially modulated by music and faces depending on the congruence of emotional content. There was a greater BOLD response in STG when the emotion signaled by the music and faces was congruent. Furthermore, the magnitude of these changes differed for happy congruence and sad congruence, i.e., the activation of STG when happy music was presented with happy faces was greater than the activation seen when sad music was presented with sad faces. In contrast, incongruent stimuli diminished the BOLD response in STG and elicited greater signal change in bilateral FG. Behavioral testing supplemented these findings by showing that subject ratings of emotion in faces were influenced by emotion in music. When presented with happy music, happy faces were rated as more happy (p=0.051) and sad faces were rated as less sad (p=0.030). When presented with sad music, happy faces were rated as less happy (p=0.008) and sad faces were rated as sadder (p=0.002). INTERPRETATION: Happy-sad congruence across modalities may enhance activity in auditory regions while incongruence appears to impact the perception of visual affect, leading to increased activation in face processing regions such as the FG. We suggest that greater understanding of the neural bases of happy-sad congruence across modalities can shed light on basic mechanisms of affective perception and experience and may lead to novel insights in the study of emotion regulation and therapeutic use of music.


Subject(s)
Brain Mapping , Brain/physiology , Emotions/physiology , Facial Expression , Music/psychology , Acoustic Stimulation , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Photic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL