Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38005216

ABSTRACT

The study of medicinal plants and their active compounds is relevant to maintaining knowledge of traditional medicine and to the development of new drugs of natural origin with lower environmental impact. From the seeds of the Brazilian plant Pterodon emarginatus, six different preparations were obtained: essential oil (EO), ethanol extract (EthE) prepared using the traditional method, and four extracts using solvents at different polarities, such as n-hexane, chloroform, ethyl acetate, and methanol (HexE, ChlE, EtAE, and MetE). Chemical characterization was carried out with gas chromatography, allowing the identification of several terpenoids as characteristic components. The two sesquiterpenes ß-caryophyllene and farnesol were identified in all preparations of Pterodon emarginatus, and their amounts were also evaluated. Furthermore, the total flavonoid and phenolic contents of the extracts were assessed. Successively, the antiradical activity with DPPH and ORAC assays and the influence on cell proliferation by the MTT test on the human colorectal adenocarcinoma (HT-29) cell line of the preparations and the two compounds were evaluated. Lastly, an in silico study of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) showed that ß-caryophyllene and farnesol could be suitable candidates for development as drugs. The set of data obtained highlights the potential medicinal use of Pterodon emarginatus seeds and supports further studies of both plant preparations and isolated compounds, ß-caryophyllene and farnesol, for their potential use in disease with free radical involvement as age-related chronic disorders.


Subject(s)
Fabaceae , Oils, Volatile , Humans , Farnesol/pharmacology , Polycyclic Sesquiterpenes , Oils, Volatile/chemistry , Fabaceae/chemistry , Plant Extracts/chemistry , Antioxidants/analysis , Seeds/chemistry
2.
Pharmaceutics ; 15(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242783

ABSTRACT

The aqueous decoctions of Vernonia amygdalina (VA) leaves and roots are widely used in traditional African medicine as an antidiabetic remedy. The amount of luteolin and vernodalol in leaf and root extracts was detected, and their role was studied regarding α-glucosidase activity, bovine serum albumin glycation (BSA), reactive oxygen species (ROS) formation, and cell viability, together with in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Vernodalol did not affect α-glucosidase activity, whereas luteolin did. Furthermore, luteolin inhibited the formation of advanced glycation end products (AGEs) in a concentration-dependent manner, whereas vernodalol did not reduce it. Additionally, luteolin exhibited high antiradical activity, while vernodalol demonstrated a lower scavenger effect, although similar to that of ascorbic acid. Both luteolin and vernodalol inhibited HT-29 cell viability, showing a half-maximum inhibitory concentration (IC50) of 22.2 µM (-Log IC50 = 4.65 ± 0.05) and 5.7 µM (-Log IC50 = 5.24 ± 0.16), respectively. Finally, an in silico ADMET study showed that both compounds are suitable candidates as drugs, with appropriate pharmacokinetics. This research underlines for the first time the greater presence of vernodalol in VA roots compared to leaves, while luteolin is prevalent in the latter, suggesting that the former could be used as a natural source of vernodalol. Consequently, root extracts could be proposed for vernodalol-dependent antiproliferative activity, while leaf extracts could be suggested for luteolin-dependent effects, such as antioxidant and antidiabetic effects.

3.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35215317

ABSTRACT

Magnolol and luteolin are two natural compounds recognized in several medicinal plants widely used in traditional medicine, including type 2 diabetes mellitus. This research aimed to determine the inhibitory activity of magnolol and luteolin on α-glucosidase activity. Their biological profile was studied by multispectroscopic methods along with inhibitory kinetic analysis and computational experiments. Magnolol and luteolin decreased the enzymatic activity in a concentration-dependent manner. With 0.075 µM α-glucosidase, the IC50 values were similar for both compounds (~ 32 µM) and significantly lower than for acarbose (815 µM). Magnolol showed a mixed-type antagonism, while luteolin showed a non-competitive inhibition mechanism. Thermodynamic parameters suggested that the binding of magnolol was predominantly sustained by hydrophobic interactions, while luteolin mainly exploited van der Waals contacts and hydrogen bonds. Synchronous fluorescence revealed that magnolol interacted with the target, influencing the microenvironment around tyrosine residues, and circular dichroism explained a rearrangement of the secondary structure of α-glucosidase from the initial α-helix to the final conformation enriched with ß-sheet and random coil. Docking studies provided support for the experimental results. Altogether, the data propose magnolol, for the first time, as a potential α-glucosidase inhibitor and add further evidence to the inhibitory role of luteolin.

SELECTION OF CITATIONS
SEARCH DETAIL