Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
PLoS One ; 18(9): e0291537, 2023.
Article in English | MEDLINE | ID: mdl-37708114

ABSTRACT

In a short time, several types of injectable and oral therapeutics have been developed and used to effectively manage patients with coronavirus disease 2019 (COVID-19). BEN815 is an improved mixture of three extracts (Psidium guajava, Camellia sinensis, and Rosa hybrida) recognized by the Ministry of Food and Drug Safety of Korea as a health food ingredient that alleviates allergic rhinitis. The current animal efficacy study was performed to assess its probability of improving COVID-19 symptoms. BEN815 treatment significantly increased the survival of K18-hACE2 transgenic mice and reduced viral titers in the lungs at 5 days post infection (DPI). Furthermore, the lungs of the treated mice showed mild tissue damage at 5 DPI and nearly complete recovery from COVID-19 at 14 DPI. BEN815 appears to be an effective and minimally toxic anti-SARS-CoV-2 agent in mice and has potential for clinical applications.


Subject(s)
COVID-19 , Camellia sinensis , Animals , Mice , Animals, Laboratory , SARS-CoV-2 , Mice, Transgenic , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
2.
J Med Food ; 25(12): 1102-1111, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36516056

ABSTRACT

Alcoholic liver disease (ALD) is a major chronic liver disease. Chronic alcohol consumption induces dysbiosis, disruption of gut barrier function, oxidative stress, inflammation, and changes in lipid metabolism, thereby leading to ALD. In this study, we investigated whether the commercial Morinda citrifolia extract Nonitri can ameliorate ALD symptoms through the gut-liver axis. We used mice chronically administered EtOH and found a marked increase in serum endotoxin levels and biomarkers of liver pathology. Moreover, the EtOH-treated group showed significantly altered gut microbial composition particularly that of Alistipes, Bacteroides, and Muribaculum and disrupted gut barrier function. However, Nonitri improved serum parameters, restored the microbial proportions, and regulated levels of zonula occludens1, occludin, and claudin1. Furthermore, Nonitri suppressed inflammation by inhibiting endotoxin-triggered toll-like receptor 4-signaling pathway and fat deposition by reducing lipogenesis through activating AMP-activated protein kinase in the liver. Furthermore, Pearson's correlation analysis showed that gut microbiota and ALD-related markers were correlated, and Nonitri regulated these bacteria. Taken together, our results indicate that the hepatoprotective effect of Nonitri reduces endotoxin levels by improving gut health, and inhibits fat deposition by regulating lipid metabolism.


Subject(s)
Fatty Liver, Alcoholic , Liver Diseases, Alcoholic , Morinda , Mice , Animals , Fatty Liver, Alcoholic/drug therapy , Fatty Liver, Alcoholic/metabolism , Dysbiosis/microbiology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Liver/metabolism , Ethanol/metabolism , Endotoxins , Inflammation/metabolism , Mice, Inbred C57BL
3.
Planta Med ; 86(12): 876-883, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32645736

ABSTRACT

Advanced glycation end products and methylglyoxal are known to show increased levels in diabetic conditions and induce diverse metabolic disorders. However, the antiglycation ability of the bark of Syzygium aromaticum is not yet studied. In this study, we determined the inhibitory effects of S. aromaticum on AGE formation. Moreover, S. aromaticum showed breakage and inhibitory ability against the formation of AGE-collagen crosslinks. In SV40 MES13 cells, treatment with the S. aromaticum extract significantly ameliorated MG-induced oxidative stress as well as cytotoxicity. Furthermore, in the S. aromaticum extract-treated group, there was a reduction in levels of several diabetic markers, such as blood glucose, kidney weight, and urinary albumin to creatinine ratio in streptozotocin-induced diabetic rats. Treatment with the S. aromaticum extract significantly increased the expression of nuclear factor erythroid 2-related factor 2, a transcription factor involved in the expression of antioxidant enzymes. Moreover, the treatment significantly upregulated the expression of glyoxalase 1 and downregulated the expression of receptor for AGEs. These results suggest that the S. aromaticum extract might ameliorate diabetes-induced renal damage by inhibiting the AGE-induced glucotoxicity and oxidative stress through the Nrf2/Glo1 pathway.


Subject(s)
Diabetes Mellitus, Experimental , Lactoylglutathione Lyase , Syzygium , Animals , Glycation End Products, Advanced , NF-E2-Related Factor 2 , Oxidative Stress , Rats
4.
J Ethnopharmacol ; 257: 112866, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32302714

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Molokhia is highly consumed in Egypt as edible and medicinal plants, and its leaves are used for the treatment of pain, fever, and inflammation. AIM OF THE STUDY: High-fat diet (HFD) induces gut dysbiosis, which is closely linked to metabolic diseases including obesity and leaky gut. The effects of molokhia (Corchorus olitorius L.) on anti-obesity and gut health were investigated in this study. MATERIALS AND METHODS: The effects of a water-soluble extract from molokhia leaves (WM) on lipid accumulation in 3T3-L1 adipocytes and on body weight, gut permeability, hormone levels, fecal enzyme activity of the intestinal microflora, and gut microbiota in HFD-induced C57BL/6J mice were examined. RESULTS: WM treatment significantly inhibited lipid accumulation in 3T3-L1 adipocytes. Mice treated with 100 mg/kg WM had 13.1, 52.4, and 17.4% significantly lower body weights, gut permeability, and hepatic lipid accumulation than those in the HFD group, respectively. In addition, WM influenced gut health by inhibiting metabolic endotoxemia and colonic inflammation. It also altered the composition of the gut microbiota; in particular, it increased the abundance of Lactobacillus and decreased that of Desulfovibrio. CONCLUSION: Our results extend our understanding of the beneficial effects of WM consumption, including the prevention of gut dysbiosis and obesity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Obesity Agents/pharmacology , Bacteria/drug effects , Colitis/prevention & control , Colon/microbiology , Corchorus , Gastrointestinal Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Obesity/prevention & control , Plant Extracts/pharmacology , Plant Leaves , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Obesity Agents/isolation & purification , Bacteria/enzymology , Bacteria/growth & development , Biomarkers/blood , Colitis/metabolism , Colitis/microbiology , Corchorus/chemistry , Diet, High-Fat , Disease Models, Animal , Dysbiosis , Gastrointestinal Agents/isolation & purification , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/microbiology , Plant Extracts/isolation & purification , Plant Leaves/chemistry
5.
Planta Med ; 85(17): 1363-1373, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31618776

ABSTRACT

Lespedeza bicolor, a traditional herbal medicine widely used in Australia, North America, and Eastern Asia, has various therapeutic effects on inflammation, nephritis, hyperpigmentation, and diuresis. In this study, to evaluate the effects of L. bicolor on cognitive function, we examined whether L. bicolor improved amyloid beta-induced memory impairment and assessed the possible mechanisms in mice. Catechin, rutin, daidzein, luteolin, naringenin, and genistein were identified in the powdered extract of L. bicolor by HPCL-DAD analyses. In behavioral experiments, L. bicolor (25 and 50 mg/kg, p. o.) significantly improved amyloid beta25 - 35 (6 nmol, intracerebroventricular)-induced cognitive dysfunction in the Y-maze, novel recognition, and passive avoidance tests. Our molecular studies showed L. bicolor (25 and 50 mg/kg, p. o.) significantly recovered the reduced glutathione content as well as increased thiobarbituric acid reactive substance and acetylcholinesterase activities in the hippocampus. Furthermore, we found that L. bicolor significantly increased the expression of brain-derived neurotrophic factor, and phospho-Akt, extracellular signal-regulated kinase, and cAMP response element binding caused by amyloid beta25 - 35 in the hippocampus. In conclusion, L. bicolor exerts a potent memory-enhancing effect on cognitive dysfunction induced by amyloid beta25 - 35 in mice.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Lespedeza/chemistry , Memory Disorders/drug therapy , Plant Extracts/therapeutic use , Amyloid beta-Peptides , Animals , Cognition/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , MAP Kinase Signaling System/drug effects , Male , Memory Disorders/chemically induced , Mice , Peptide Fragments , Signal Transduction/drug effects , Up-Regulation
6.
J Clin Med ; 8(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370192

ABSTRACT

Lespedeza bicolor (LB) is often used in traditional medicine to remove toxins, replenish energy stores, and regulate various symptoms of diabetes. This study aimed to explore the use of LB as a therapeutic to prevent diabetic nephropathy in methylglyoxal (MGO)-treated models in vitro and in vivo. Western blotting, immunostaining, and biochemical assays were used to obtain several experimental readouts in renal epithelial cells (LLC-PK1) and BALB/c mice. These include: production of reactive oxygen species (ROS), formation of advanced glycation end-products (AGEs), expression of receptor for advanced glycation end-products (RAGE), apoptotic cell death, glucose levels, fatty acid and triglyceride levels, expression of pro-inflammatory cytokines IL-1ß and TNF-α, glyoxalase 1 (Glo1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Pretreatment with LB significantly reduced MGO-induced cellular apoptosis, intracellular production of ROS, and formation of AGEs to ameliorate renal dysfunction in vitro and in vivo. Interestingly, administering LB in MGO-treated cells and mice upregulated the expression of Nrf2 and Glo1, and downregulated the expression of IL-1ß and TNF-α. Moreover, LB reduced MGO-induced AGE accumulation and RAGE expression in the kidneys, which subsequently reduced AGE-RAGE interactions. Overall, LB ameliorates renal cell apoptosis and corrects renal dysfunction in MGO-treated mice. These findings extend our understanding of the pathogenic mechanism of MGO-induced nephrotoxicity and regulation of the AGE/RAGE axis by Lespedeza bicolor.

7.
Phytomedicine ; 48: 1-9, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30195866

ABSTRACT

BACKGROUND: Lespedeza cuneata G.Don (LCE), which belongs to the genus Lespedeza (Leguminosae), is a traditional oriental medicine known to prevent diabetes and cardiovascular diseases. However, no scientific studies about the effectiveness of LCE, their responsible bioactive constituents, and its mechanisms against endothelial dysfunction have been performed. PURPOSE: This study was performed to investigate the role of LCE and its chemical components in ameliorating endothelial dysfunction. METHODS: The production of nitric oxide (NO) was evaluated after LCE treatment in HUVECs. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent. Western blot analysis was performed to determine the protein expression of endothelial nitric oxide synthase (eNOS) and protein kinase B (PKB, also known as Akt) in human umbilical vein endothelial cells (HUVECs). RESULTS: Pretreatment with L-NAME and LY294002 significantly decreased the LCE-induced NO production, as well as eNOS and Akt phosphorylation. ß-Sitosterol and ß-Sitosterol 6'-linolenoyl-3-O-ß-D-glucopyranoside are the bioactive constituents increase NO production as well as eNOS phosphorylation. CONCLUSION: Our findings suggest that LCE increase NO production via eNOS phosphorylation of PI3K/Akt signaling pathway.


Subject(s)
Human Umbilical Vein Endothelial Cells/drug effects , Lespedeza/chemistry , Nitric Oxide Synthase Type III/metabolism , Protective Agents/pharmacology , Signal Transduction/drug effects , Cell Survival/drug effects , Chromones , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Morpholines , NG-Nitroarginine Methyl Ester , Nitric Oxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Vascular Diseases/metabolism
8.
Int J Mol Sci ; 19(9)2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30223524

ABSTRACT

Spatholobus suberectus (SS) is a medicinal herb commonly used in Asia to treat anemia, menoxenia and rheumatism. However, its effect of diabetes-induced renal damage and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of SS on diabetes-induced renal damage and explored the possible underlying mechanisms using db/db type 2 diabetes mice. db/db mice were administered SS extract (50 mg/kg) orally for 6 weeks. SS-treated group did not change body weight, blood glucose and glycated hemoglobin (HbA1c) levels. However, SS treatment reversed diabetes-induced dyslipidemia and urinary albumin/creatinine ratio in db/db mice. Moreover, SS administration showed significantly increased protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a transcription factor for antioxidant enzyme. SS significantly upregulated glyoxalase 1 (Glo1) and NADPH quinine oxidoreductase 1 (NQO1) expression but reduced CML accumulation and downregulated receptor for AGEs (RAGE). Furthermore, SS showed significant decrease of periodic acid⁻Schiff (PAS)-positive staining and AGEs accumulation in histological and immunohistochemical analyses of kidney tissues. Taken together, we concluded that SS ameliorated the renal damage by inhibiting diabetes-induced glucotoxicity, dyslipidemia and oxidative stress, through the Nrf2/antioxidant responsive element (ARE) stress-response system.


Subject(s)
Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Fabaceae/chemistry , Glycation End Products, Advanced/metabolism , Plant Extracts/pharmacology , Animals , Diabetic Nephropathies/drug therapy , Disease Models, Animal , Glycation End Products, Advanced/antagonists & inhibitors , Immunohistochemistry , Isoflavones/chemistry , Isoflavones/pharmacology , Lactoylglutathione Lyase/metabolism , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred Strains , NF-E2-Related Factor 2/metabolism , Plant Extracts/chemistry , Signal Transduction/drug effects
9.
Nutrients ; 10(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495397

ABSTRACT

Eucommia ulmoides Oliv. (EU), also known as Du-Zhong, is a medicinal herb commonly used in Asia to treat hypertension and diabetes. Despite evidence of the protective effects of EU against diabetes, its precise effects and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of EU on AGEs-induced renal disease and explored the possible underlying mechanisms using streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice received EU extract (200 mg/kg) orally for 6 weeks. EU treatment did not change blood glucose and glycated hemoglobin (HbA1c) levels in diabetic mice. However, the EU-treated group showed a significant increase in the protein expression and activity of glyoxalase 1 (Glo1), which detoxifies the AGE precursor, methylglyoxal (MGO). EU significantly upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression but downregulated that of receptor for AGE (RAGE). Furthermore, histological and immunohistochemical analyses of kidney tissue showed that EU reduced periodic acid-Schiff (PAS)-positive staining, AGEs, and MGO accumulation in diabetic mice. Based on these findings, we concluded that EU ameliorated the renal damage in diabetic mice by inhibiting AGEs formation and RAGE expression and reducing oxidative stress, through the Glo1 and Nrf2 pathways.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/drug therapy , Eucommiaceae/chemistry , Glycation End Products, Advanced/metabolism , Plant Preparations/pharmacology , Animals , Blood Glucose/metabolism , Gene Expression Regulation , Glycated Hemoglobin/metabolism , Glycation End Products, Advanced/adverse effects , Kidney/drug effects , Kidney/metabolism , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Pyruvaldehyde/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism
10.
Phytomedicine ; 36: 26-36, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29157823

ABSTRACT

BACKGROUND: Lespedeza species have been used as a traditional medicine to treat nephritis, azotemia, inflammation, energy depletion, diabetes, and diuresis. PURPOSE: The purpose of this study is to screen the most potent Lespedeza species against methylglyoxal (MGO)-induced glucotoxicity, and to elucidate the mechanisms of action. Also, we will attempt to identify small chemical metabolites that might be responsible for such anti-glucotoxicity effects. METHODS: Firstly, the protective effect of 26 different Lespedeza species against MGO-induced toxicity in human umbilical vein endothelial cells was investigated. The chemical metabolites of the most potent species (Lespedeza bicolor 1 (LB1) were identified by high pressure liquid chromatography quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS), then quantified by HPLC. The effects of LB1 on MGO-induced apoptosis were measured by annexin V-FITC staining and western blot. Inhibitory effects of LB1 on MGO-induced ROS generation, and effect of LB1 on advanced glycation end products (AGEs) inhibitor or a glycated cross-link breaker are also measured. RESULTS: Among different Lespedeza species, LB1 extract was shown to reduce intracellular reactive oxidative species, exhibit anti-apoptotic effects, strongly inhibit all the mitogen-activated protein kinase signals, inhibit MGO-induced AGEs formation, and break down preformed AGEs. We tentatively identified 17 chemical constituents of LB1 by HPLC-Q-TOF-MS/MS. Among those, some components, such as genistein and quercetin, significantly reduced the AGEs formation and increased the AGEs-breaking activity, resulting in the reduction of glucotoxicity. CONCLUSION: LB1 extract has shown to be effective in preventing or treating MGO-induced endothelial dysfunction.


Subject(s)
Lespedeza/chemistry , Plant Extracts/pharmacology , Pyruvaldehyde/toxicity , Apoptosis/drug effects , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical/methods , Genistein/analysis , Genistein/pharmacology , Glycation End Products, Advanced/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Lespedeza/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Quercetin/analysis , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
11.
Antiviral Res ; 144: 266-272, 2017 08.
Article in English | MEDLINE | ID: mdl-28668556

ABSTRACT

The aim of this study was to establish the effect of a 70% ethanol extract of Elaeocarpus sylvestris (ESE) on varicella-zoster virus (VZV) replication and identify the specific bioactive component(s) underlying its activity. ESE induced a significant reduction in replication of the clinical strain of VZV. Activity-guided fractionation indicated that the ethyl acetate (EtOAc) fraction of ESE contains the active compound(s) inhibiting VZV replication. High-Performance Liquid Chromatography coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (HPLC-Q-TOF-MS/MS) analysis of the EtOAc fraction of ESE facilitated the identification of 13 chemical components. Among these, 1,2,3,4,6-penta-O-galloyl-ß-D-glucose (PGG) markedly suppressed VZV-induced c-Jun N-terminal kinase (JNK) activation, expression of viral immediate-early 62 (IE62) protein and VZV replication. Our results collectively support the utility of PGG as a potential candidate anti-viral drug to treat VZV-associated diseases.


Subject(s)
Elaeocarpaceae/chemistry , Herpesvirus 3, Human/drug effects , Hydrolyzable Tannins/pharmacology , Plant Extracts/chemistry , Virus Replication/drug effects , Cells, Cultured , Chromatography, High Pressure Liquid , Herpesvirus 3, Human/physiology , Humans , Hydrolyzable Tannins/isolation & purification , Immediate-Early Proteins/analysis , JNK Mitogen-Activated Protein Kinases/analysis , Spectrometry, Mass, Electrospray Ionization , Trans-Activators/analysis , Viral Envelope Proteins/analysis
12.
Phytomedicine ; 23(8): 872-81, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27288923

ABSTRACT

BACKGROUND: Lindera neesiana Kurz (Lauraceae), popularly known as Siltimur in Nepal, is an aromatic and spicy plant with edible fruits. It is a traditional herbal medicine widely used for the treatment of diarrhea, tooth pain, headache, and gastric disorders and is also used as a stimulant. PURPOSE: The aim of the present study was to examine in vitro cytoprotective, anti-neuroinflammatory and neuroprotective potential of an aqueous extract of L. neesiana (LNE) fruit using different central nervous system (CNS) cell lines. METHODS: In order to study the neuroprotective potential of LNE, we used three different types of CNS cell lines: murine microglia (BV2), rat glioma (C6), and mouse neuroblastoma (N2a). Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent, and prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and nerve growth factor (NGF) release in the culture media was determined using enzyme linked immunosorbent assay (ELISA) kits. Western blot analysis was performed to determine the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), mitogen activated protein kinase (MAPK) family proteins, Bax, B cell lymphoma (BCL)-2, and cleaved caspase 3. Neurite outgrowth was determined using the IncuCyte imaging system. RESULTS: LNE treatment not only reduced nitric oxide (NO) production in a dose-dependent manner, but also significantly reduced proinflammatory cytokines, iNOS and COX-2 production by lipopolysaccharide (LPS) stimulated BV-2 cells. LNE increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), whereas p-p38 and p- janus kinase (JNK) expression was significantly decreased in activated microglia. Furthermore, LNE increased cell viability of N2a cells, which was accompanied by decreased caspase-3 expression and the ratio of Bax/Bcl2 protein expression as well as increased NGF and neurite outgrowth, suggesting its neuroprotective potential against LPS-induced effects. Additionally, LNE substantially increased nuclear factor erythroid 2-related factor 2 (Nrf2) secretion in N2a cells and inhibited lipid dehydrogenase (LDH) release in H2O2-stimulated BV2 cells demonstrating the strong anti-inflammatory and antioxidant effects of LNE in CNS cell lines. CONCLUSION: Here we found that water the soluble extract of LNE has promising anti-neuroinflammation and anti-apoptotic properties and identify LNE as a potential natural candidate for neuroprotection.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fruit/chemistry , Lindera/chemistry , Neuroprotective Agents/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Cytokines/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/pharmacology
13.
Exp Neurobiol ; 24(1): 71-83, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25792871

ABSTRACT

Artemisia princeps (AP) is a flowering perennial used as a traditional medicine and dietary supplement across East Asia. No study has yet assessed its effects on synaptic plasticity in hippocampus and much less in a model of ovarian hormone deficiency. We examined the influence of chronic oral AP ethanol extract treatment in ovariectomized rats on the induction of long-term depression in a representative synapse (CA3-CA1) of the hippocampus. Ovariectomized rats demonstrated lower trabecular mean bone mineral densities than sham, validating the establishment of pathology. Against this background of pathology, AP-treated ovariectomized rats exhibited attenuated long-term depression (LTD) in CA1 relative to water-treated controls as measured by increased field excitatory post-synaptic potentials (fEPSP) activation averages over the post-stimulation period. While pathological significance of long-term depression (LTD) in ovariectomized rats is conflicting, that AP treatment significantly affected its induction offers justification for further study of its influences on plasticity and its related disorders.

14.
Article in English | MEDLINE | ID: mdl-25709709

ABSTRACT

We devised a study using animal models of hyperthermia and hypothermia and also attempted to accurately assess the effects of Panax ginseng (PG) and Panax quinquefolius (PQ) on body temperature using these models. In addition, we investigated the effects of PG and PQ in our animal models in high and low temperature environments. The results of our experiments show that mice with normothermia, hyperthermia, and hypothermia maintained their body temperatures after a certain period in accordance with the condition of each animal model. In our experiments of body temperature change in models of normal, low, or high room temperature, the hyperthermic model did not show any body temperature change in either the PG- or PQ-administered group. In the normal and low room temperature models, the group administered PG maintained body temperature, while the body temperature of the PQ-administered group was lower than or similar to that of the control group. In conclusion, the fact that PG increases body temperature could not be verified until now. We also showed that the effect of maintaining body temperature in the PG-administered group was superior in a hypothermia-prone low temperature environment.

15.
J Agric Food Chem ; 62(36): 8962-72, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25144532

ABSTRACT

Soybean may be a promising ingredient for regulating UVB-induced inflammatory damage to the skin. We investigated the anti-inflammatory effects of diets supplemented with fermented soybean on UVB-induced skin photodamage and the effectiveness of soybean (S) and fermented soybean (FS) dietary supplementation. To investigate the effects of two major isoflavones-daidzein and genistein-from FS, we used cocultures with keratinocytes and fibroblasts. Genistein treatment strongly inhibited the production of IL-6 and MAPK signaling. Forty hairless male mice divided into four groups were fed with a control diet (group N: normal, group C; +UVB) or diets with 2.5% S+UVB or 2.5% FS+UVB (group S, group FS) for 8 weeks. Macrophage infiltration to the dermis was reduced more in groups S and FS than in group C. The expression levels of iNOS and COX-2 were significantly decreased in group FS (by 7.7% ± 0.4% and 21.2% ± 0.3%, respectively [p < 0.05]).


Subject(s)
Anti-Inflammatory Agents , Dermatitis/etiology , Dermatitis/therapy , Diet , Fermentation , Glycine max , Animals , Coculture Techniques , Cyclooxygenase 2 Inhibitors , Dietary Supplements , Fibroblasts , Genistein/administration & dosage , Humans , Isoflavones/administration & dosage , Keratinocytes , Male , Mice , Mice, Hairless , Nitric Oxide Synthase Type II/antagonists & inhibitors , Signal Transduction/drug effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL