Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Environ Toxicol Pharmacol ; 107: 104417, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493879

ABSTRACT

The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10 mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10 µg/g AuNPs, 1.6 g/kg CS, and 10 µg/g CS-AuNPs were administered orally simultaneously with 10 mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1ß levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.


Subject(s)
Arsenic , Cynara scolymus , Metal Nanoparticles , Plant Extracts , Mice , Animals , Arsenic/metabolism , Gold , Mice, Inbred BALB C , Metal Nanoparticles/toxicity , Hippocampus/metabolism
2.
Mol Med Rep ; 28(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37921058

ABSTRACT

Telomeres are major contributors to cell fate and aging through their involvement in cell cycle arrest and senescence. The accelerated attrition of telomeres is associated with aging­related diseases, and agents able to maintain telomere length (TL) through telomerase activation may serve as potential treatment strategies. The aim of the present study was to assess the potency of a novel telomerase activator on TL and telomerase activity in vivo. The administration of a nutraceutical formulation containing Centella asiatica extract, vitamin C, zinc and vitamin D3 in 18­month­old rats for a period of 3 months reduced the telomere shortening rate at the lower supplement dose and increased mean the TL at the higher dose, compared to pre­treatment levels. TL was determined using the Q­FISH method in peripheral blood mononuclear cells collected from the tail vein of the rats and cultured with RPMI­1640 medium. In both cases, TLs were significantly longer compared to the untreated controls (P≤0.001). In addition, telomerase activity was increased in the peripheral blood mononuclear cells of both treatment groups. On the whole, the present study demonstrates that the nutraceutical formulation can maintain or even increase TL and telomerase activity in middle­aged rats, indicating a potential role of this formula in the prevention and treatment of aging­related diseases.


Subject(s)
Telomerase , Rats , Animals , Telomerase/metabolism , Leukocytes, Mononuclear/metabolism , Telomere Shortening , Dietary Supplements , Telomere/metabolism
3.
Front Chem ; 11: 1158198, 2023.
Article in English | MEDLINE | ID: mdl-37234200

ABSTRACT

Introduction: Free radicals are reactive oxygen species that constantly circulate through the body and occur as a side effect of many reactions that take place in the human body. Under normal conditions, they are removed from the body by antioxidant processes. If these natural mechanisms are disrupted, radicals accumulate in excess and contribute to the development of many diseases. Methodology: Relevant recent information on oxidative stress, free radicals, reactive oxidative species, and natural and synthetic antioxidants was collected by researching electronic databases such as PubMed / Medline, Web of Science, and Science Direct. Results: According to the analysed studies, this comprehensive review provided a recent update on oxidative stress, free radicals and antioxidants and their impact on the pathophysiology of human diseases. Discussion: To counteract the condition of oxidative stress, synthetic antioxidants must be provided from external sources to supplement the antioxidant defense mechanism internally. Because of their therapeutic potential and natural origin, medicinal plants have been reported as the main source of natural antioxidants phytocompounds. Some non-enzymatic phytocompounds such as flavonoids, polyphenols, and glutathione, along with some vitamins have been reported to possess strong antioxidant activities in vivo and in vitro studies. Thus, the present review describes, in brief, the overview of oxidative stress-directed cellular damage and the unction of dietary antioxidants in the management of different diseases. The therapeutic limitations in correlating the antioxidant activity of foods to human health were also discussed.

4.
Adv Pharmacol Pharm Sci ; 2022: 8002766, 2022.
Article in English | MEDLINE | ID: mdl-36465700

ABSTRACT

The therapeutic potential of medicinal plants is noted because of the presence of varieties of biochemicals. The monoterpenes, like nerol, estragole, and 3,7-dimethyl-1-octanol, have been reported for antimicrobial, antifungal, anthelmintic, and antioxidant activities. This study evaluated the toxic, cytotoxic, and oxidant/antioxidant effects of these compounds by several in vitro (DPPH and ABTS radical scavenging, and ferric reducing potential), ex vivo (hemolysis), and in vivo (Artemia Salina and Saccharomyces cerevisiae) assays. Results suggest that estragole and 3,7-dimethyl-1-octanol at 31.25-500 µg/mL did not exhibit significant cytotoxic effects in the A. Salina and hemolysis tests. Nerol showed significant cytotoxic effects on these test systems at all test concentrations. The monoterpenes showed radical (ABTS•+ and DPPH•) scavenging capacities in a concentration-dependent manner in vitro tests. However, they did not oxidize the genetic material of S. cerevisiae (SODWT, Sod1Δ, Sod2Δ, Sod1/Sod2Δ, Cat1Δ, and Cat1Δ/Sod1Δ) lines. Among the three monoterpenes, nerol may be a good candidate for antioxidant and anti-tumor therapies.

5.
Front Pharmacol ; 13: 926607, 2022.
Article in English | MEDLINE | ID: mdl-36188551

ABSTRACT

Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.

6.
Oxid Med Cell Longev ; 2022: 8214821, 2022.
Article in English | MEDLINE | ID: mdl-35198096

ABSTRACT

Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.


Subject(s)
Crocus/chemistry , Phytochemicals/pharmacology , Animals , Humans , Medicine, Traditional , Phytochemicals/chemistry , Phytochemicals/therapeutic use
7.
Crit Rev Food Sci Nutr ; 62(29): 8045-8058, 2022.
Article in English | MEDLINE | ID: mdl-33983094

ABSTRACT

Cardiovascular ailments are the number one cause of mortalities throughout the globe with 17.9 million deaths per year. Platelet activation and aggregation play a crucial role in the pathogenesis of arterial diseases, including acute coronary syndrome, acute myocardial infarction, cerebrovascular transient ischemia, unstable angina, among others. Flavonoids-rich plant extracts are gaining interest for treating the heart-related problems due to safe nature of these herbal extracts. Consumption of plant-food-derived bioactives, particularly flavonoids, has shown antithrombotic, and cardiovascular protective effects due to its anti-platelet activity. Preclinical and clinical trials have proven that flavonoid-rich plant extracts are protective against the cardiac ailments through anti-platelet aggregation activity. This review aims to highlight the anti-platelet aggregation potential of flavonoids with a key emphasis on the therapeutic efficacy in humans. The mechanism of flavonoids in preventing and treating cardiovascular diseases is also highlighted based on preclinical and clinical experimental trials. Further studies are the need of time for exploring the exact molecular mechanism of flavonoids as anti-platelet aggregation agents for treating heart-related problems.


Subject(s)
Fibrinolytic Agents , Flavonoids , Fibrinolytic Agents/pharmacology , Flavonoids/chemistry , Health Promotion , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology
8.
Int J Vitam Nutr Res ; 92(1): 49-66, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33435749

ABSTRACT

The novel coronavirus (SARS-CoV-2) causing COVID-19 disease pandemic has infected millions of people and caused more than thousands of deaths in many countries across the world. The number of infected cases is increasing day by day. Unfortunately, we do not have a vaccine and specific treatment for it. Along with the protective measures, respiratory and/or circulatory supports and some antiviral and retroviral drugs have been used against SARS-CoV-2, but there are no more extensive studies proving their efficacy. In this study, the latest publications in the field have been reviewed, focusing on the modulatory effects on the immunity of some natural antiviral dietary supplements, vitamins and minerals. Findings suggest that several dietary supplements, including black seeds, garlic, ginger, cranberry, orange, omega-3 and -6 polyunsaturated fatty acids, vitamins (e.g., A, B vitamins, C, D, E), and minerals (e.g., Cu, Fe, Mg, Mn, Na, Se, Zn) have anti-viral effects. Many of them act against various species of respiratory viruses, including severe acute respiratory syndrome-related coronaviruses. Therefore, dietary supplements, including vitamins and minerals, probiotics as well as individual nutritional behaviour can be used as adjuvant therapy together with antiviral medicines in the management of COVID-19 disease.


Subject(s)
COVID-19 , Vitamins , Dietary Supplements , Humans , Minerals , SARS-CoV-2
9.
Oxid Med Cell Longev ; 2021: 6349041, 2021.
Article in English | MEDLINE | ID: mdl-34925698

ABSTRACT

Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an annual climbing plant, native to Asia with multiple therapeutic uses in traditional medicine. This updated review is aimed at discussing the ethnopharmacological, phytochemical, pharmacological properties, and molecular mechanisms highlighted in preclinical experimental studies and toxicological safety to evaluate the therapeutic potential of this genus. The literature from PubMed, Google Scholar, Elsevier, Springer, Science Direct, and database was analyzed using the basic keyword "Benincasa hispida." Other searching strategies, including online resources, books, and journals, were used. The taxonomy of the plant has been made by consulting "The Plant List". The results showed that B. hispida has been used in traditional medicine to treat neurological diseases, kidney disease, fever, and cough accompanied by thick mucus and to fight intestinal worms. The main bioactive compounds contained in Benincasa hispida have cytotoxic, anti-inflammatory, and anticancer properties. Further safety and efficacy investigations are needed to confirm these beneficial therapeutic effects and also future human clinical studies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Cucurbitaceae/chemistry , Dietary Supplements/analysis , Medicine, Traditional/methods , Phytochemicals/pharmacology , Animals , Humans
10.
Oxid Med Cell Longev ; 2021: 6492346, 2021.
Article in English | MEDLINE | ID: mdl-34531939

ABSTRACT

Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.


Subject(s)
Coumarins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Cell Movement/drug effects , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/therapeutic use , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Humans , Protective Agents/chemistry , Protective Agents/pharmacology , Protective Agents/therapeutic use
11.
Front Pharmacol ; 12: 674682, 2021.
Article in English | MEDLINE | ID: mdl-34504422

ABSTRACT

Sexually transmitted diseases (STDs) are produced by pathogens like bacteria, fungi, parasites, and viruses, and may generate severe health problems such as cancer, ulcers, and even problems in the newborn. This narrative review aims to present updated information about the use of natural bioactive compounds for the prevention and treatment of sexually transmitted infections. A search of the literature was performed using databases and search engines such as PubMed, Scopus, Google Scholar and Science Direct. From the pharmacotherapeutic management point of view, any strategies for prevention should contain medical approaches. The bioactive compounds obtained from natural products have shown biological effects against different microorganisms for the treatment of these diseases. The main results showed antimicrobial, antiprotozoal, antifungal and antiviral effects such as HIV. Also, the molecular mechanisms, signalling pathways and action targets of natural compounds were highlighted, thus justifying bacterial and antifungal inhibition, apoptosis or reduction of viral replication. From the data of our study, we can conclude that natural compounds may be a significant source for adjuvant drugs / complementary therapies in the treatment of STDs. With all these benefits, the future must conduct extensive clinical trials and the development of pharmaceutical nanotechnologies for a greater therapeutic effect.

12.
Int J Mol Med ; 48(5)2021 11.
Article in English | MEDLINE | ID: mdl-34515324

ABSTRACT

Telomeres, the protective caps of chromosomes, shorten with age, as telomerase, the enzyme responsible for the compensation of telomere erosion, is inactive in the majority of cells. Telomere shortening and subsequent cell senescence lead to tissue aging and age­related diseases. Neurodegenerative disorders, characterized by the progressive loss of neurons among other hallmarks of aged tissue, and poor cognitive function, have been associated with a short telomere length. Thus, telomerase activity has emerged as a therapeutic target, with novel agents being under investigation. The present study aimed to examine the effects of a novel natural telomerase activator, 'Reverse™', containing Centella asiatica extract, vitamin C, zinc and vitamin D3 on the brains of 18­month­old rats. The administration of the 'Reverse™' supplement for 3 months restored telomerase reverse transcriptase (TERT) expression in the brains of rats, as revealed by ELISA and immunohistochemistry. In addition, the findings from PCR­ELISA demonstrated an enhanced telomerase activity in the cerebellum and cortex cells in the brains of rats treated with the 'Reverse™' supplement. The histopathological findings confirmed a structural reversibility effect close to the differentiation observed in the young control group of rats treated with two capsules/kg body weight of the 'Reverse™' supplement. On the whole, the findings of the present study provide a strong indication that an increased telomerase activity and TERT expression may be achieved not only in the postnatal or embryonic period, but also in the brains of middle­aged rats through nutraceutical supplementation. The use of the 'Reverse™' supplement may thus contribute to the potential alleviation of a number of central nervous system diseases.


Subject(s)
Aging/pathology , Brain/pathology , Dietary Supplements , Telomerase/antagonists & inhibitors , Animals , Cerebral Cortex/pathology , Male , Rats, Sprague-Dawley , Telomerase/metabolism
13.
Front Nutr ; 8: 664197, 2021.
Article in English | MEDLINE | ID: mdl-34336908

ABSTRACT

Neoechinulins are diketopiperazine type indole alkaloids that demonstrate radical scavenging, anti-inflammatory, antiviral, anti-neurodegenerative, neurotrophic factor-like, anticancer, pro-apoptotic, and anti-apoptotic properties. An array of neoechinulins such as neoechinulins A-E, isoechinulins A-C, cryptoechunilin have been isolated from various fungal sources like Aspergillus sp., Xylaria euglossa, Eurotium cristatum, Microsporum sp., etc. Besides, neoechinulin derivatives or stereoisomers were also obtained from diverse non-fungal sources viz. Tinospora sagittata, Opuntia dillenii, Cyrtomium fortunei, Cannabis sativa, and so on. The main purpose of this review is to provide update information on neoechinulins and their analogues about the molecular mechanisms of the pharmacological action and possible future research. The recent data from this review can be used to create a basis for the discovery of new neoechinulin-based drugs and their analogues in the near future. The online databases PubMed, Science and Google scholar were researched for the selection and collection of data from the available literature on neoechinulins, their natural sources and their pharmacological properties. The published books on this topic were also analysed. In vitro and in vivo assays have established the potential of neoechinulin A as a promising anticancer and anti-neuroinflammatory lead molecule. Neoechinulin B was also identified as a potential antiviral drug against hepatitis C virus. Toxicological and clinical trials are needed in the future to improve the phyto-pharmacological profile of neoquinolines. From the analysis of the literature, we found that neoechinulins and their derivatives have special biological potential. Although some modern pharmacological analyzes have highlighted the molecular mechanisms of action and some signalling pathways, the correlation between these phytoconstituents and pharmacological activities must be validated in the future by preclinical toxicological and clinical studies.

14.
Front Pharmacol ; 12: 665031, 2021.
Article in English | MEDLINE | ID: mdl-34220504

ABSTRACT

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer's disease, Amyloid ß peptide, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.

15.
Neurochem Res ; 46(9): 2205-2225, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34120291

ABSTRACT

Epilepsy is a related chronic neurological condition of a predisposition for recurrent epileptic seizures, with various manifestations and causes. Although there are antiepileptic drugs, complementary natural therapies are widely used. The purpose of this systematic review was to analyze the antiepileptic/anticonvulsant pharmacological properties of plant-food derived bioactive molecules. In this regard, a systematic review of the PubMed database was made based on the inclusion criteria. Natural compounds/herbs with scientifically proven antiepileptic properties were selected. Experimental pharmacological studies in vitro and in vivo have shown that flavonoids, alkaloids and terpenoids may have anticonvulsant mechanisms similar to the new generation antiepileptic drugs. The relationships of structure-anticonvulsant effect, pharmacological models, seizure-inducing factors and response, effective dose were also analyzed and discussed. The results of in vitro and in vivo pharmacological studies analyzed in this systematic review support the clinical importance of plant-food-derived bioactive molecules for the complementary treatment of epilepsy. Thus, are opened new perspectives to develop new natural anticonvulsant drugs.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Seizures/drug therapy , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Anticonvulsants/pharmacology , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Terpenes/pharmacology , Terpenes/therapeutic use
16.
J Clin Med ; 10(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562115

ABSTRACT

Ageing is a genetically programmed physiological process that is modulated by numerous environmental factors, associated with decreasing physiological function, decreasing reproductive rate and increasing age-related mortality rate. Maintaining mobility performance and physical function in the elderly is the main objective of the successful ageing concept. In this study, we aimed to evaluate the beneficial effect of a novel nutraceutical formulation containing Centella asiatica L. extract, vitamin C, zinc and vitamin D3 (as cholecalciferol) on motor activity and anxiety with the use of a murine model of old animals, as a means of providing proof for clinical use in the elderly, for enhancing physical strength and improving life quality. Eighteen Sprague Dawley 18 months old male rats were divided into three groups and received corn oil (the control group) or 1 capsule/kg bw Reverse supplement (treatment group 1) or 2 capsules/kg bw Reverse supplement (treatment group 2), for a period of 3 months. The Reverse supplement (Natural Doctor S.A, Athens, Greece) contains 9 mg Centella asiatica L. extract, vitamin C (200 mg as magnesium ascorbate), zinc (5 mg as zinc citrate), vitamin D3 (50 µg as cholecalciferol) per capsule. Before and after the treatment, the motor function and behavioral changes for anxiety and depression were evaluated using the open-field test, elevated plus-maze test and rotarod test. The supplementation with Reverse (Natural Doctor S.A) supplement can improve the locomotor activity in old rats in a dose-dependent manner, as demonstrated by an increase in the latency to leave from the middle square, in the number of rearings in the open field test, in the time spent in the open arms and time spent in the center in the elevated plus-maze test and the latency to all in all three consecutive trials in the rotarod test. Stress also decreased significantly in a dose-dependent manner, following the treatment with Reverse supplement, as was demonstrated by the decrease in the number of groomings at the open field test and time spent in the dark and the number of groomings at the elevated plus-maze test.

17.
Phytother Res ; 35(3): 1187-1217, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33025667

ABSTRACT

Ficus genus is typically tropical plants and is among the earliest fruit trees cultivated by humans. Ficus carica L. is the common fig, Ficus benjamina L. is the weeping fig, and Ficus pumila L. is the creeping fig. These species are commonly used in traditional medicine for a wide range of diseases and contain rich secondary metabolites that have shown diverse applications. This comprehensive review describes for Ficus genus the phytochemical compounds, traditional uses and contemporary pharmacological activities such as antioxidant, cytotoxic, antimicrobial, anti-inflammatory, antidiabetic, antiulcer, and anticonvulsant. An extended survey of the current literature (Science Direct, Scopus, PubMed) has been carried out as part of the current work. The trends in the phytochemistry, pharmacological mechanisms and activities of Ficus genus are overviewed in this manuscript: antimicrobial, antidiabetic, anti-inflammatory and analgesic activity, antiseizure and anti-Parkinson's diseases, cytotoxic and antioxidant. Health-promoting effects, recent human clinical studies, safety and adverse effects of Ficus plants also are covered. The medical potential and long-term pharmacotherapeutic use of the genus Ficus along with no serious reported adverse events, suggests that it can be considered as being safe.


Subject(s)
Ficus/chemistry , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Humans , Phytochemicals/pharmacology , Plant Extracts/pharmacology
18.
Front Pharmacol ; 11: 571459, 2020.
Article in English | MEDLINE | ID: mdl-33192514

ABSTRACT

Analysis of the most relevant studies on the pharmacological properties and molecular mechanisms of psoralidin, a bioactive compound from the seeds of Cullen corylifolium (L.) Medik. confirmed its complex therapeutic potential. In the last years, the interest of the scientific community regarding psoralidin increased, especially after the discovery of its benefits in estrogen-related diseases and as a chemopreventive agent. Growing preclinical pieces of evidence indicate that psoralidin has anticancer, antiosteoporotic, anti-inflammatory, anti-vitiligo, antibacterial, antiviral, and antidepressant-like effects. Here, we provide a comprehensive and critical review of psoralidin on its bioavailability, pharmacological activities with focus on molecular mechanisms and cell signaling pathways. In this review, we conducted literature research on the PubMed database using the following keywords: "Psoralidin" or "therapeutic effects" or "biological activity" or "Cullen corylifolium" in order to identify relevant studies regarding PSO bioavailability and mechanisms of therapeutic effects in different diseases based on preclinical, experimental studies. In the light of psoralidin beneficial actions for human health, this paper gathers complete information on its pharmacotherapeutic effects and opens new natural therapeutic perspectives in chronic diseases.

19.
Medicina (Kaunas) ; 56(9)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867260

ABSTRACT

The positive impact of probiotic strains on human health has become more evident than ever before. Often delivered through food, dietary products, supplements, and drugs, different legislations for safety and efficacy issues have been prepared. Furthermore, regulatory agencies have addressed various approaches toward these products, whether they authorize claims mentioning a disease's diagnosis, prevention, or treatment. Due to the diversity of bacteria and yeast strains, strict approaches have been designed to assess for side effects and post-market surveillance. One of the most essential delivery systems of probiotics is within food, due to the great beneficial health effects of this system compared to pharmaceutical products and also due to the increasing importance of food and nutrition. Modern lifestyle or various diseases lead to an imbalance of the intestinal flora. Nonetheless, as the amount of probiotic use needs accurate calculations, different factors should also be taken into consideration. One of the novelties of this review is the presentation of the beneficial effects of the administration of probiotics as a potential adjuvant therapy in COVID-19. Thus, this paper provides an integrative overview of different aspects of probiotics, from human health care applications to safety, quality, and control.


Subject(s)
Coronavirus Infections/prevention & control , Dietary Supplements/standards , Gastrointestinal Diseases/therapy , Liver Diseases/therapy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Probiotics/therapeutic use , Betacoronavirus , COVID-19 , Celiac Disease/therapy , Clostridium Infections/therapy , Constipation/therapy , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Depressive Disorder/therapy , Diverticular Diseases/therapy , Dysentery/therapy , Enterocolitis, Necrotizing/therapy , Fermented Foods , Food Hypersensitivity/therapy , Helicobacter Infections/therapy , Hepatic Encephalopathy/therapy , Humans , Inflammatory Bowel Diseases/therapy , Non-alcoholic Fatty Liver Disease/therapy , Pneumonia, Viral/therapy , Probiotics/adverse effects , Probiotics/standards , Quality Control , SARS-CoV-2 , COVID-19 Drug Treatment
20.
Front Physiol ; 11: 694, 2020.
Article in English | MEDLINE | ID: mdl-32714204

ABSTRACT

Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL