Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Food Sci ; 86(3): 1089-1096, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33751602

ABSTRACT

Weaning is the gradual process of introducing solids or semisolid foods into an infant's diet, in order to ensure their healthy growth. This study developed two kinds of formula weaning food based on roasted or extruded quinoa and millet flour, and evaluated their quality. A fructo-oligosaccharide (FOS)/galacto-oligosaccharide (GOS) mix was added to provide the prebiotic potential. The protein contents of the roasted quinoa-millet complementary food (RQMCF) and extruded quinoa-millet complementary food (EQMCF) were 16.7% and 17.74% higher, respectively, than that of commercial millet complementary food (CMCF). Both RQMCF and EQMCF provided sufficient levels of energy and minerals. Extrusion provided the foods with a lower viscosity, and higher solubility and water absorption ability than roasting. In vitro digestion results showed that EQMCF exhibited the highest starch and protein digestibility (89.76% and 88.72%, respectively) followed by RQMCF (87.75% and 86.63%) and CMCF (83.35% and 81.54%). The digestas of RQMCF and EQMCF after in vitro digestion exhibited prebiotic effects by promoting the growth of the probiotics (Lactobacillus plantarum and Lactobacillus delbrueckii). These results will contribute to developing complementary weaning foods for infants. PRACTICAL APPLICATION: This study has shown that extrusion is an efficient and stable processing method for producing infant complementary foods with low density, balanced nutrition, and high levels of starch and protein digestibility. Extruded quinoa-millet prebiotic complementary food can also promote the proliferation of probiotics. This will provide a new direction for developing novel infant formula weaning foods.


Subject(s)
Chenopodium quinoa/chemistry , Flour/analysis , Food, Formulated/analysis , Infant Formula/chemistry , Millets/chemistry , Prebiotics/analysis , Food Handling , Humans , Infant , Infant Formula/analysis , Nutritional Status , Weaning
2.
J Sci Food Agric ; 99(8): 3886-3894, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30684279

ABSTRACT

BACKGROUND: Foxtail millet (Setaria italica) bran is a by-product of millet processing, rich in dietary fiber (DF) and has great application value. A comparative study was conducted to explore the differences in structural and functional properties among millet bran DF, soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). RESULTS: There was a significant difference in the content of monosaccharides between SDF and IDF, in which xylose, arabinose and glucose were the main compositions. The results of scanning electron microscopy showed that DF and IDF had different forms of network structure, and SDF presented a sign of mutual adhesion. The total phenolic and flavonoid contents were 0.54 and 0.08 g kg-1 in SDF. Antioxidant activity of SDF was higher than that of IDF based on the evaluation of free radical scavenging and iron reducing capacity in vitro. Meanwhile, the glucose dialysis retardation index of IDF and SDF was 12.59% and 9.26% at 30 min, respectively. And, there was no significant difference in the adsorption capacity of glucose among different samples (P > 0.05). Furthermore, SDF had strong α-amylase inhibition (17.92% inhibition rate) and sodium cholate adsorption capacities; the adsorption amount was 16.76 g kg-1 in 2.00 g L-1 sodium cholate solution. CONCLUSION: Foxtail millet bran DF, especially SDF, has good functional properties and would be a suitable ingredient for health-beneficial food production. However, the relevant verification trials in vivo need to be carried out in the next steps. © 2019 Society of Chemical Industry.


Subject(s)
Antioxidants/analysis , Dietary Fiber/analysis , Plant Extracts/chemistry , Setaria Plant/chemistry , Adsorption , Antioxidants/chemistry , Flavonoids/chemistry , Monosaccharides/chemistry , Phenols/chemistry , Sodium Cholate/chemistry , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL