Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Phytomedicine ; 126: 155283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422652

ABSTRACT

BACKGROUND: Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE: The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS: The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS: DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION: PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.


Subject(s)
Colitis, Ulcerative , Colitis , Plant Extracts , Pomegranate , Animals , Mice , Interleukin-6/metabolism , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/metabolism , Colon/pathology , Cytokines/metabolism , Body Weight , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Colitis, Ulcerative/drug therapy , Sulfate Transporters/metabolism , Sulfate Transporters/pharmacology , Sulfate Transporters/therapeutic use , Antiporters/adverse effects , Antiporters/metabolism
2.
Front Pharmacol ; 14: 1160480, 2023.
Article in English | MEDLINE | ID: mdl-37214441

ABSTRACT

Backgrounds: The incidence of melanosis coli (MC) has gradually increased annually, attracting significant attention and efforts into this field. A potential risk for MC is the long-term use of anthraquinone laxatives in patients with constipation. Most traditional cathartic drugs are made from herbs containing anthraquinone compounds. This review aims to provide guidance for the application of traditional Chinese herbs containing anthraquinones for physicians and researchers. Materials and methods: We reviewed risk factors and pathogenesis of MC, and natural anthraquinones isolated from TCM herbs. We searched Pubmed and CNKI databases for literature related to MC with keywords such as"traditional Chinese medicine", "Chinese herbs", "anthraquinones", and "melanosis coli". The literature is current to January 2023 when the searches were last completed. After the literature retrieval, the TCM herbs containing anthraquinones (including component identification and anthraquinone content determination) applied in clinical were selected. According to the collected evidence, we provide a list of herbs containing anthraquinones that could cause MC. Results: We identified 20 herbs belonging to 7 families represented by Polygonaceae, Fabaceae, Rhamnaceae, and Rubiaceae, which may play a role in the pathogenesis of MC. Among these, the herbs most commonly used include Dahuang (Rhei Radix et Rhizome), Heshouwu (Radix Polygoni Multiflori), Huzhang (Rhizoma Polygoni Cuspidati), Juemingzi (Semen Cassiae), Luhui (Aloe) and Qiancao (Rubiae Radix et Rhizoma). Conclusion: Due to a lack of awareness of the chemical composition of TCM herbs, many patients with constipation and even some TCM physicians take cathartic herbal remedies containing abundant anthraquinones to relieve defecation disturbances, resulting in long-term dependence on these herbs, which is potentially associated with most cases of MC. When such treatments are prescribed, TCM physicians should avoid long-term use in large doses to reduce their harm on colonic health. Individuals who take healthcare products containing these herbs should also be under the supervision of a doctor.

3.
Article in English | MEDLINE | ID: mdl-35189797

ABSTRACT

BACKGROUND: Wu-Mei-Wan (WMW), a traditional Chinese medicine (TCM) formula, has a good effect on the treatment of obesity and has been proven helpful to promote the metabolism of adipose tissue. However, its underlying mechanism remains to be studied. This study aims to explore the potential pharmacological mechanism of WMW in the treatment of obesity. METHODS: Network pharmacology was used to sort out the relationship between WMW putative targets and obesity-related drug targets or disease targets, which indicated the mechanism of WMW in treating obesity from two aspects of clinical drugs approved by the Food and Drug Administration (FDA) and obesity-related diseases. Databases such as Traditional Chinese Medicine Systems Pharmacology (TCMSP), PubChem, DrugBank, DisGeNET, and Genecards were used to collect information about targets. String platform was used to convert the data into gene symbol of "homo sapiens", and perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. With the Human Protein Reference Database (HPRD) as background data, Cytoscape 3.6.0 software was used to construct a new protein-protein interaction (PPI) network. Mechanism diagrams of key pathways were obtained from the KEGG database. AutoDock Vina software was used to conduct molecular docking verification. RESULTS: The number of targets in the overlap between WMW putative targets and obesity-related drug targets accounted for more than 50% of the latter, and HTR3A, SLC6A4, and CYP3A4 were core targets. In obesity-related disease targets-WMW putative targets PPI network, the Th17 cell differentiation pathway, and the IL-17 signaling pathway were key pathways, and the 1st module and the 7th module were central function modules that were highly associated with immunity and inflammation. Molecular docking verified that STAT3, TGFB1, MMP9, AHR, IL1B, and CCL2 were core targets in the treatment of WMW on obesity. CONCLUSION: WMW has similar effects on lipid and drug metabolism as the current obesity-related drugs, and is likely to treat obesity by inhibiting Th17 cell differentiation and alleviating metabolic inflammation.


Subject(s)
Network Pharmacology , Signal Transduction , United States , Humans , Molecular Docking Simulation , Cell Differentiation , Databases, Protein , Serotonin Plasma Membrane Transport Proteins
4.
J Ethnopharmacol ; 298: 115655, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35988837

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: HuanglianGanjiang Tang (HGT) is a classic prescription of traditional Chinese medicine (TCM) recorded in Dan Xi Xin Fa, which was used to alleviate manifestations like diarrhea, abdominal pain and hemafecia. In current clinical practices, HGT is adopted for the treatment of ulcerative colitis (UC) and affords good curative effect. However, the underlying mechanism deserves further elucidation. AIM OF THE STUDY: UC is a hard-to-curable and easy-to-recurrent inflammatory disease. This study is to evaluate the potential therapeutics and explore the molecular mechanism of HGT on UC in the mouse model. MATERIALS AND METHODS: The components of HGT extracts were identified by HPLC. The colitis of mice was induced by 3% (w./v.) dextran sulfate sodium (DSS). The HGT decoction was prepared through boiling and centrifuging. The mice were given HGT decoction via oral gavage (0.34 g/ml & 0.68 g/ml; 5 ml/kg b.w.). The protective role of HGT on colitis mice was evaluated by body weight change, colon length, disease activity index (DAI) and histological scores. The expressions of necroptosis-related and vitamin D receptor (VDR)-related proteins were measured by Western blot, RT-qPCR and immunofluorescence. RESULTS: HGT could significantly reduce the loss of body weight and colon length in colitis mice, and alleviated the DAI and histological scores. Mechanically, HGT also promoted the expression of E-cadherin, Occludin, ZO-1 and VDR, and reduced the level of intestinal inflammatory cytokines, such as, IL-6, IL-1ß and TNF-α. Besides, HGT downregulated the protein level of p-RIPK3, p-RIPK1 and p-MLKL while upregulated the protein level of Caspase-8 in colon tissue compared to the model group. CONCLUSION: Our study addressed that HGT can alleviate DSS-induced colitis of mice through inhibiting colonic necroptosis by upregulating the level of VDR.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Body Weight , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon , Dextran Sulfate , Disease Models, Animal , Mice , Mice, Inbred C57BL , Necroptosis , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/therapeutic use
5.
Biomed Pharmacother ; 146: 112491, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34896967

ABSTRACT

OBJECTIVES: Accumulating studies revealed that 6-gingerol, a compound extracted mainly from ginger, treats obesity by preventing hyperlipidemia in vivo induced by high-fat-diet (HFD). The present study intends to further evaluate the efficacy of 6-gingerol in the treatment of obesity and investigate its potential mechanism. METHODS: Obese mice were established by HFD induction. Bioinformatic analysis was used to predict the possible pathways enrolled by the application of 6-gingerol. Body weight and the levels of blood glucose and lipids were examined and analyzed for the evaluation of the therapeutic effect of 6-gingerol. The size and amounts as well as the status of adipocytes were determined by histological staining. The expression levels of related proteins in adipose tissue were assessed by immunohistochemical staining, immunofluorescent staining, and Western blot analysis. In addition, the expression levels of related mRNA were assessed by RT-qPCR. RESULTS: HFD induced obesity was significantly curbed by 6-gingerol treatment. Here inhibition mechanism of 6-gingerol is demonstrated on excessive hypertrophy and hyperplasia of adipocytes in white adipose tissue (WAT), which may be related to the regulation of adipocytokines, such as PPARγ, C/EBPα, FABP4 and adiponectin, and the TLR3/IL-6/JAK1/STAT3 axis. Moreover, 6-gingerol treatment suppressed the expressions of IL-1ß and CD68 in the liver and AKT/INSR/IRS-1 in epididymal WAT. CONCLUSION: The results suggested that 6-gingerol could alleviate metabolic inflammation in the liver and insulin resistance to treat obesity. The mechanism is mainly involved in the inhibition of excessive hypertrophy and hyperplasia of adipocytes.


Subject(s)
Adipocytes/drug effects , Anti-Obesity Agents/therapeutic use , Catechols/therapeutic use , Fatty Alcohols/therapeutic use , Metabolic Diseases/drug therapy , Obesity/drug therapy , Adipocytes/pathology , Animals , Anti-Obesity Agents/pharmacology , Catechols/pharmacology , Diet, High-Fat , Fatty Alcohols/pharmacology , Hyperplasia/drug therapy , Hyperplasia/metabolism , Hypertrophy/drug therapy , Hypertrophy/metabolism , Insulin Resistance , Interleukin-1beta/metabolism , Liver/drug effects , Liver/metabolism , Male , Metabolic Diseases/metabolism , Mice, Inbred C57BL , PPAR gamma/metabolism , STAT3 Transcription Factor/metabolism
6.
Chin Med ; 16(1): 78, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399822

ABSTRACT

BACKGROUND: Accumulating evidence indicated that necroptosis plays an essential role in the pathogenesis of inflammatory bowel disease (IBD). The O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) of necroptotic signal molecule receptor-interacting serine-threonine kinase 3 (RIPK3) was reported to exert a protective effect in gut inflammation. Our recent study suggested traditional Chinese herbal formula Wu-Mei-Wan (WMW) as an effective prescription in mouse colitis. However, the potential mechanisms are not fully understood. Considering the crucial role of necroptosis in the pathogenesis of IBD, therefore, this study was designed to explain whether the anti-colitis effect of WMW is mediated by modulating necroptosis and its related mechanisms. METHODS: The protective effects of WMW on colitis have been determined by detecting colitis mice body weight, disease activity index (DAI), survival rate and colon length. Colonic inflammation was examined by inflammatory cells infiltration and local cytokines levels. After then, we measured the levels of necroptosis and O-GlcNAcylation. C O-immunoprecipitation experiments were used to address whether elevated O-GlcNAcylation can inhibit necroptotic signal transduction in the treatment of WMW. Finally, the key enzymes in O-GlcNAcylation: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) were examined and molecular docking analysis was used to determine effective natural compounds in the regulation on OGT and OGA activities. RESULTS: Our results showed that WMW significantly improved mice body weight, survival rate and colon length, decreased DAI in TNBS-induced colitis. WMW obviously alleviated colonic inflammatory responses with reduced macrophages, neutrophils infiltration and local IL-1ß, IL-6, TNF-α and IFN-γ levels. It was found that WMW increased colonic O-GlcNAcylation level and inhibited the activation of RIPK1, RIPK3 and MLKL. Then, further experiments revealed that WMW enhanced OGT activity and suppressed OGA activity, thereby increasing RIPK3 O-GlcNAcylation and inhibiting the binding of RIPK3 and MLKL, which led to the inhibition of necroptosis. Additionally, docking analysis demonstrated that hesperidin, coptisine and ginsenoside Rb1 may exert a major role in the regulation on OGT and OGA activities by WMW. CONCLUSION: Our work demonstrated that WMW can alleviate TNBS-induced colitis in mice by inhibiting necroptosis through increasing RIPK3 O-GlcNAcylation.

7.
Biomed Pharmacother ; 134: 111129, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348308

ABSTRACT

Ulcerative colitis (UC) is an inflammatory bowel disease with complex pathogenesis, which is affected by genetic factors, intestinal immune status and intestinal microbial homeostasis. Intestinal epithelial barrier defect is crucial to the development of UC. Berberine, extracted from Chinese medicine, can identify bitter taste receptor on intestinal Tuft cells and activate IL-25-ILC2-IL-13 immune pathway to impair damaged intestinal tract by promoting differentiation of intestinal stem cells, which might be a potential approach for the treatment of UC.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Berberine/therapeutic use , Colitis, Ulcerative/drug therapy , Colon/drug effects , Intestinal Mucosa/drug effects , Stem Cells/drug effects , Animals , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/immunology , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Stem Cells/immunology , Stem Cells/metabolism , Stem Cells/pathology
8.
J Ethnopharmacol ; 252: 112580, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-31972322

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wu-Mei-Wan (WMW), a classic traditional Chinese herb medicine, is one of the most important formulations to treat digestive diseases from ancient times to the present. Previous study showed that WMW has satisfactory curative effects on experimental colitis, which motivating the application of WMW on colitis-associated complications. AIM OF THE STUDY: Intestinal fibrosis is usually considered to be a common complication of inflammatory bowel disease (IBD), particularly Crohn's disease (CD). Currently, no effective preventive measures or medical therapies are available for that. This work was designed to evaluate the effect and related mechanism of WMW on chronic colitis-associated intestinal fibrosis mice model. MATERIALS AND METHODS: The chronic colitis-associated intestinal fibrosis mice model was established by weekly intrarectal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The mice survival rate, disease activity index (DAI), colon length and histological score were examined to assess the therapeutic effect of WMW. Masson's trichrome staining, hydroxyproline assay, immunohistochemical staining and western blot analysis were used to evaluate fibrosis level. Colon inflammation was determined by ELISA and immunofluorescence staining. Immunofluorescence staining was used to evaluate fibroblasts proliferation and epithelial to mesenchymal transition (EMT), and the expression of key molecules in fibrosis was analyzed by western blot. RESULTS: Here we showed that WMW alleviates chronic colitis with improved survival rate, DAI, colon length and histological score. WMW inhibited the progression of intestinal fibrosis, decreased the expression of various fibrosis markers, such as α-SMA, collagen I, MMP-9 and fibronectin. In addition, WMW treatment reduced cytokines IL-6 and IFN-γ, and downregulated proinflammatory NF-κBp65 and STAT3 signaling pathways. Importantly, administration of WMW led to the inhibition of colon fibroblast proliferation and EMT, which are important mediators during fibrosis. Several key profibrotic pathways, including TGF-ß/Smad and Wnt/ß-catenin pathways, were downregulated by WMW treatment. CONCLUSION: Our work demonstrated that WMW can prevent intestinal fibrosis and the mechanisms involved may be related to the inhibition of colon fibroblasts activation.


Subject(s)
Colitis/drug therapy , Colon/drug effects , Fibroblasts/drug effects , Animals , Chronic Disease , Colitis/complications , Colitis/immunology , Colitis/pathology , Colon/immunology , Colon/pathology , Cytokines/blood , Cytokines/immunology , Fibrosis , Male , Medicine, Chinese Traditional , Mice, Inbred C57BL
9.
Article in English | MEDLINE | ID: mdl-28928791

ABSTRACT

Wu-Mei-Wan (WMW) is a Chinese herbal formula used to treat type 2 diabetes. In this study, we aimed to explore the effects and mechanisms of WMW on insulin resistance in HepG2 cells. HepG2 cells were pretreated with palmitate (0.25 mM) to impair the insulin signaling pathway. Then, they were treated with different doses of WMW-containing medicated serum and stimulated with 100 nM insulin. Results showed that palmitate could reduce the glucose consumption rate in HepG2 cells and impair insulin signaling related to phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), thereby regulating the downstream signaling pathways. However, medicated serum of WMW restored impaired insulin signaling, upregulated the expression of phospho-IR (pIR), phosphatidylinositol 3-kinase p85 subunit, phosphoprotein kinase B, and glucose transporter 4, and decreased IRS serine phosphorylation. In addition, it decreased the expression of interleukin-1ß and tumor necrosis factor-α, which are the key proinflammatory cytokines involved in insulin resistance; besides, it reduced the expression of NLRP3 inflammasome. These results suggested that WMW could alleviate palmitate-induced insulin resistance in HepG2 cells via inhibition of NLRP3 inflammasome and reduction of proinflammatory cytokine production.

SELECTION OF CITATIONS
SEARCH DETAIL