ABSTRACT
Nanoformulations with endogenous/exogenous stimulus-responsive characteristics show great potential in tumor cell elimination with minimal adverse effects and high precision. Herein, an intelligent nanotheranostic platform (denoted as TPZ@Cu-SnS2-x /PLL) for tumor microenvironment (TME) and near-infrared light (NIR) activated tumor-specific therapy is constructed. Copper (Cu) doping and the resulting sulfur vacancies can not only improve the response range of visible light but also improve the separation efficiency of photogenerated carriers and increase the carrier density, resulting in the ideal photothermal and photodynamic performance. Density functional theory calculations revealed that the introduction of Cu and resulting sulfur vacancies can induce electron redistribution, achieving favorable photogenerated electrons. After entering cells through endocytosis, the TPZ@Cu-SnS2-x /PLL nanocomposites show the pH responsivity property for the release of the TPZ selectively within the acidic TME, and the released Cu2+ can first interact with local glutathione (GSH) to deplete GSH with the production of Cu+ . Subsequently, the Cu+ -mediated Fenton-like reaction can decompose local hydrogen peroxide into hydroxyl radicals, which can also be promoted by hyperthermia derived from the photothermal effect for tumor cell apoptosis. The integration of photoacoustic/computed tomography imaging-guided NIR phototherapy, TPZ-induced chemotherapy, and GSH-elimination/hyperthermia enhanced chemodynamic therapy results in synergistic therapeutic outcomes without obvious systemic toxicity in vivo.
ABSTRACT
Thermoelectric therapy has emerged as a promising treatment strategy for oncology, but it is still limited by the low thermoelectric catalytic efficiency at human body temperature and the inevitable tumor thermotolerance. We present a photothermoelectric therapy (PTET) strategy based on triphenylphosphine-functionalized Cu3VS4 nanoparticles (CVS NPs) with high copper ionic mobility at room temperature. Under near-infrared laser irradiation, CVS NPs not only generate hyperthermia to ablate tumor cells but also catalytically yield superoxide radicals and induce endogenous NADH oxidation through the Seebeck effect. Notably, CVS NPs can accumulate inside mitochondria and deplete NADH, reducing ATP synthesis by competitively inhibiting the function of complex I, thereby down-regulating the expression of heat shock proteins to relieve tumor thermotolerance. Both in vitro and in vivo results show notable tumor suppression efficacy, indicating that the concept of integrating PTET and mitochondrial metabolism modulation is highly feasible and offers a translational promise for realizing precise and efficient cancer treatment.
Subject(s)
Nanoparticles , Neoplasms , Humans , Copper/chemistry , NAD , Phototherapy/methods , Neoplasms/therapy , Neoplasms/pathology , Nanoparticles/chemistry , Cell Line, TumorABSTRACT
Arming activatable mild-photothermal therapy (PTT) with the property of relieving tumor thermotolerance holds great promise for overcoming traditional mild PTT limitations such as thermoresistance, insufficient therapeutic effect, and off-target heating. Herein, a mitochondria-targeting, defect-engineered AFCT nanozyme with enhanced multi-enzymatic activity was elaborately designed as a tumor microenvironment (TME)-activatable phototheranostic agent to achieve remarkable anti-tumor therapy via "electron transport chain (ETC) interference and synergistic adjuvant therapy". Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the AFCT nanozymes with excellent catalytic activity. In TME, open sources of H2O2 can be achieved by superoxide dismutase-mimicking AFCT nanozymes. In response to the dual stimuli of H2O2 and mild acidity, the peroxidase-mimicking activity of AFCT nanozymes not only catalyzes the accumulation of H2O2 to generate ·OH but also converts the loaded 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) into its oxidized form with strong near-infrared absorption, specifically unlocking its photothermal and photoacoustic imaging properties. Intriguingly, the undesired thermoresistance of tumor cells can be greatly alleviated owing to the reduced expression of heat shock proteins enabled by NADH POD-mimicking AFCT-mediated NADH depletion and consequent restriction of ATP supply. Meanwhile, the accumulated ·OH can facilitate both apoptosis and ferroptosis in tumor cells, resulting in synergistic therapeutic outcomes in combination with TME-activated mild PTT.
Subject(s)
Nanoparticles , Neoplasms , Humans , Photothermal Therapy , Phototherapy/methods , Hydrogen Peroxide , Electron Transport , NAD , Nanoparticles/therapeutic use , Neoplasms/therapy , Cell Line, Tumor , Tumor MicroenvironmentABSTRACT
Responsive nanosystems for tumor treatment with high specificity and sensitivity have aroused great attention. Herein, we develop a tumor microenvironment responsive and near-infrared (NIR)-activatable theranostic nanoreactor for imaging-guided anticancer therapy. The nanoreactor (SnO2-x@AGP) is comprised of poly(vinylpyrrolidine) encapsulated hollow mesoporous black SnO2-x nanoparticles coloaded with glucose oxidase (GOx) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The constructed nanoreactor can be specifically activated through endogenous H2O2 by an NIR-mediated "bursting-like" process to enhance its imaging and therapeutic functions. Black SnO2-x with abundant oxygen vacancies expedites effective separation of electron-hole pairs from energy-band structure and endows them with strong hyperthermia effect upon NIR laser irradiation. The generating toxic H2O2 with the assistance of GOx provides SnO2-x@AGP with the capacity of oxidative stress therapy. Ascended H2O2 can activate ABTS into ABTSâ¢+. ABTSâ¢+ not only possesses significant NIR absorption properties, but also disrupts intracellular glutathione to generate excessive reactive oxygen species for improved phototherapy, leading to more effective treatment together with oxidative stress therapy. Thus, SnO2-x@AGP with NIR-mediated and H2O2-activated performance presents tumor inhibition efficacy with minimized damage to normal tissues. These outstanding characteristics of SnO2-x@AGP bring an insight into the development of activatable nanoreactors for smart, precise, and non-invasive cancer theranostics.
ABSTRACT
The emergence of X-ray-induced photodynamic therapy (X-PDT) holds tremendous promise for clinical deep-penetrating cancer therapy. However, the clinical application of X-PDT in cancer treatment is still limited due to the hypoxic property of cancerous tissue, the inherent antioxidant system of tumor cells, and the difficulty in matching the absorption spectra of photosensitizers. Herein, a versatile core-shell radiosensitizer (SCNPs@DMSN@CeOx-PEG, denoted as SSCP) was elaborately designed and constructed to enhance X-PDT by coating tunable mesoporous silica on nanoscintillators, followed by embedding the cerium oxide nanoparticles in situ. The obtained SSCP radiosensitizer demonstrated a distinct blue-shift in the ultraviolet light region, so that it could perfectly absorb the ultraviolet light converted by the SCNPs core, resulting in the formation of photoinduced electron-hole (e--h+) pairs separation to generate reactive oxygen species (ROS). In addition, the cerium oxide exhibits high glutathione consumption to heighten ROS accumulation, and catalase-like activity to alleviate the hypoxia, which further enhances the efficiency of radiotherapy. Benefiting from the abundant Lu and Ce elements, the computed tomography imaging performance of SSCP is about 3.79-fold that of the clinical contrast agent (iohexol), which has great potential in both preclinical imaging and clinical translation.
Subject(s)
Cerium , Nanoparticles , Photochemotherapy , Humans , Photochemotherapy/methods , X-Rays , Reactive Oxygen Species , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Hypoxia/drug therapy , Cell Line, TumorABSTRACT
Nanosystem-mediated tumor radiosensitization strategy combining the features of X-ray with infinite penetration depth and high atomic number elements shows considerable application potential in clinical cancer therapy. However, it is difficult to achieve satisfactory anticancer efficacy using clinical radiotherapy for the majority of solid tumors due to the restrictions brought about by the tumor hypoxia, insufficient DNA damage, and rapid DNA repair during and after treatment. Inspired by the complementary advantages of nitric oxide (NO) and X-ray-induced photodynamic therapy, we herein report a two-dimensional nanoplatform by the integration of the NO donor-modified LiYF4:Ce scintillator and graphitic carbon nitride nanosheets for on-demand generation of highly cytotoxic peroxynitrite (ONOO-). By simply adjusting the Ce3+ doping content, the obtained nanoscintillator can realize high radioluminescence, activating photosensitive materials to simultaneously generate NO and superoxide radical for the formation of ONOO- in the tumor. Obtained ONOO- effectively amplifies therapeutic efficacy of radiotherapy by directly inducing mitochondrial and DNA damage, overcoming hypoxia-associated radiation resistance. The level of glutamine synthetase (GS) is downregulated by ONOO-, and the inhibition of GS delays DNA damage repair, further enhancing radiosensitivity. This work establishes a combinatorial strategy of ONOO- to overcome the major limitations of radiotherapy and provides insightful guidance to clinical radiotherapy.
Subject(s)
Neoplasms , Peroxynitrous Acid , Humans , Nitric Oxide , DNA Damage , DNA Repair , Neoplasms/radiotherapyABSTRACT
Mild photothermal therapy (PTT, <45 °C) can prevent tumor metastasis and heat damage to normal tissue, compared with traditional PTT (>50 °C). However, its therapeutic efficacy is limited owing to the hypoxic tumor environment and tumor thermoresistance owing to the overproduction of heat shock proteins (HSPs). Herein, a near-infrared (NIR)-triggered theranostic nanoplatform (GA-PB@MONs@LA) is designed for synergistic mild PTT and enhanced Fenton nanocatalytic therapy against hypoxic tumors. The nanoplatform is fabricated by the confined formation of Prussian blue (PB) nanoparticles in mesoporous organosilica nanoparticles (MONs), followed by the loading of gambogic acid (GA), an HSP90 inhibitor, and coating with thermo-sensitive lauric acid (LA). Upon NIR irradiation, the photothermal effect (44 °C) of PB not only induces apoptosis of tumor cells but also triggers the on-demand release of GA, inhibiting the production of HSP90. Moreover, the delivered heat simultaneously enhances the catalase-like and Fenton activity of PB@MONs@LA in an acidic tumor microenvironment, relieving the tumor hypoxia and promoting the generation of highly toxic â¢OH. In addition, the nanoplatform enables magnetic resonance/photoacoustic dual-modal imaging. Thus, this study describes a distinctive paradigm for the development of NIR-triggered theranostic nanoplatforms for enhanced cancer therapy.
Subject(s)
Antineoplastic Agents , Hyperthermia, Induced , Nanoparticles , Neoplasms , Cell Line, Tumor , Delayed-Action Preparations , Humans , Hyperthermia, Induced/methods , Hypoxia/therapy , Neoplasms/therapy , Phototherapy/methods , Precision Medicine , Theranostic Nanomedicine/methods , Tumor MicroenvironmentABSTRACT
Multimodal synergistic therapy based on photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) has attracted increasing attention in cancer therapy. However, the scant therapeutic efficiency is always a barrier for further application. Herein, a smart tumor microenvironment (TME) responsive nanocatalysts are developed by adopting Fe-Mn layered double hydroxides (FeMn-LDH) as an effective photothermal nanocarrier to load mesoporous silica and chlorin e6 (Ce6)-covalently coated upconversion nanoparticles (UCSP) for multimodal imaging for directed therapy. Under acidic TME, FeMn-LDH degrades into Fe3+ and Mn2+ ions to initiate a Fenton-like reaction inducing CDT and enhancing magnetic resonance imaging. Additionally, Fe3+ can decompose H2 O2 to oxygen (O2 ), enhancing PDT guided by UCSP. As a representative noninvasive imaging probe, the upconversion luminescence will recover after decomposition of FeMn-LDH, and provide high-resolution upconversion luminescent imaging guidance for pinpointed PDT. Moreover, the photothermal properties of FeMn-LDH can further enhance CDT effects. The synergistic therapy and multifunctional imaging can realize the integration of diagnosis and treatment.
Subject(s)
Nanoparticles , Photochemotherapy , Hydroxides , Oxygen , Photosensitizing Agents/therapeutic useABSTRACT
Nanocatalytic therapy, using artificial nanoscale enzyme mimics (nanozymes), is an emerging technology for therapeutic treatment of various malignant tumors. However, the relatively deficient catalytic activity of nanozymes in the tumor microenvironment (TME) restrains their biomedical applications. Here, a versatile and bacteria-like PEG/Ce-Bi@DMSN nanozyme is developed by coating uniform Bi2 S3 nanorods (NRs) with dendritic mesoporous silica (Bi2 S3 @DMSN) and then decorating ultrasmall ceria nanozymes into the large mesopores of Bi2 S3 @DMSN. The nanozymes exhibit dual enzyme-mimic catalytic activities (peroxidase-mimic and catalase-mimic) under acidic conditions that can regulate the TME, that is, simultaneously elevate oxidative stress and relieve hypoxia. In addition, the nanozymes can effectively consume the overexpressed glutathione (GSH) through redox reaction. Photothermal therapy (PTT) is introduced to synergistically improve the dual enzyme-mimicking catalytic activities and depletion of the overexpressed GSH in the tumors by photonic hyperthermia. This is achieved by taking advantage of the desirable light absorbance in the second near-infrared (NIR-II) window of the PEG/Ce-Bi@DMSN nanozymes. Subsequently the reactive oxygen species (ROS)-mediated therapeutic efficiency is significantly improved. Therefore, this study provides a proof of concept of hyperthermia-augmented multi-enzymatic activities of nanozymes for tumor ablation.