Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biomaterials ; 257: 120235, 2020 10.
Article in English | MEDLINE | ID: mdl-32736260

ABSTRACT

The clinical application of cancer radiotherapy is critically impeded by hypoxia-induced radioresistance, insufficient DNA damage, and multiple DNA repair mechanisms. Herein we demonstrate a dual-hyperthermia strategy to potentiate radiotherapy by relieving tumor hypoxia and preventing irradiation-induced DNA damage repair. The tumor hyperthermia temperature was well-controlled by a near infrared laser with minimal side effects using PEGylated nanobipyramids (PNBys) as the photo-transducer. PNBys have narrow longitudinal localized surface plasmon resonance peak in NIR-II window with a high extinction coefficient (2.0 × 1011 M-1 cm-1) and an excellent photothermal conversion efficiency (44.2%). PNBys-induced mild hyperthermia (MHt) prior to radiotherapy enables vessel dilation, blood perfusion, and hypoxia relief, resulting in an increased susceptibility of tumor cells response to radiotherapy. On the other hand, MHt after radiotherapy inhibits the repair of DNA damage generated by irradiation. The PNBys exert hierarchically superior antitumor effects by the combination of MHt pre- and post-radiotherapy in murine mammary tumor EMT-6 model. Consequently, different from the simple combination of RT and MHt, the coupling of pre- and post-MHt with RT by PNBys open intriguing avenues towards new promising antitumor efficacy.


Subject(s)
Hyperthermia, Induced , Animals , Cell Line, Tumor , Hyperthermia , Infrared Rays , Mice , Phototherapy , Surface Plasmon Resonance , Tumor Hypoxia
2.
ACS Nano ; 13(10): 11967-11980, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31553168

ABSTRACT

The deep and inner beds of solid tumors lack lymphocytic infiltration and are subjected to various immune escape mechanisms. Reversing immunosuppression deep within the tumor is vital in clinical cancer therapy, however it remains a huge challenge. In this work, we have demonstrated the use of a second window near-infrared (NIR(II)) photothermal treatment to trigger more homogeneous and deeper immunogenic cancer cell death in solid tumors, thereby eliciting both innate and adaptive immune responses for tumor control and metastasis prevention. Specifically, photothermal transducers with similar components, structures, and photothermal conversion efficiencies, but different absorptions in red light, NIR(I), and NIR(II) biowindows, were constructed by controlling the self-assembly of gold nanoparticles on fluidic liposomes. In vitro, photothermal treatments induced immunogenic cell death (ICD) that were accompanied by the release of damage-associated molecular patterns (DAMPs) regardless of the wavelength of incident lasers. In vivo, NIR(II) light resulted in a more homogeneous release and distribution of DAMPs in the deeper parts of the tumors. With the induction of ICD, NIR(II) photothermal therapy simultaneously triggered both innate and adaptive immune responses and enabled efficient tumor control with 5/8 of the mice remaining tumor-free in the cancer vaccination assay. Additionally, the NIR(II) photothermal treatment in combination with checkpoint blockade therapy exerted long-term tumor control over both primary and distant tumors. Finally, using systemically administered two-dimensional polypyrrole nanosheets as a NIR(II) transducer, we achieved striking therapeutic effects against whole-body tumor metastasis via a synergistic photothermal-immunological response.


Subject(s)
Gold/chemistry , Immunotherapy/methods , Metal Nanoparticles/chemistry , Neoplasms/therapy , Phototherapy/methods , Polymers/chemistry , Pyrroles/chemistry , Animals , Cell Death/physiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL