Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Affiliation country
Publication year range
1.
Microbiol Spectr ; : e0480322, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36809123

ABSTRACT

Coptis chinensis is a traditional Chinese medicinal herb used for more than 2,000 years. Root rot in C. chinensis can cause brown discoloration (necrosis) in the fibrous roots and rhizomes, leading to plants wilting and dying. However, little information exists about the resistance mechanism and the potential pathogens of the root rot of C. chinensis plants. As a result, in order to investigate the relationship between the underlying molecular processes and the pathogenesis of root rot, transcriptome and microbiome analyses were performed on healthy and diseased C. chinensis rhizomes. This study found that root rot can lead to the significant reduction of medicinal components of Coptis, including thaliotrine, columbamine, epiberberin, coptisine, palmatine chloride, and berberine, affecting its efficacy quality. In the present study, Diaporthe eres, Fusarium avenaceum, and Fusarium solani were identified as the main pathogens causing root rot in C. chinensis. At the same time, the genes in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction, and alkaloid synthesis pathways were involved in the regulation of root rot resistance and medicinal component synthesis. In addition, harmful pathogens (D. eres, F. avenaceum and F. solani) also induce the expression of related genes in C. chinensis root tissues to reduce active medicinal ingredients. These results provide insights into the root rot tolerance study and pave the way for process disease resistance breeding and quality production of C. chinensis. IMPORTANCE Root rot disease significantly reduces the medicinal quality of Coptis chinensis. In the present study, results found that the C. chinensis fibrous and taproot have different tactics in response to rot pathogen infection. Diaporthe eres, Fusarium avenaceum, and Fusarium solani were isolated and identified to cause different degrees of C. chinensis root rot. These results are helpful for researchers to further explore the mechanism of resistance to rhizoma Coptis root rot.

2.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1824-1830, 2022 Apr.
Article in Chinese | MEDLINE | ID: mdl-35534252

ABSTRACT

Leaf blight outbroke in Rehmannia glutinosa plantation in Wenxian county, Henan province in 2019. R. glutinosa plants with diseased leaves were collected from the plantation, and three strains were isolated from the diseased leaf samples. Pathogenicity test, morphological observation, and phylogenetic analysis of ITS, EF1-α, and Tub suggested that they were respectively Fusarium proliferatum, F. oxysporum, and F.acuminatum. Among them, F. acuminatum, as a pathogen of R. glutinosa leaf disease, had never been reported. To clarify the biological characteristics of F. acuminatum, this study tested the influence of light, pH, temperature, medium, carbon source, and nitrogen source on the mycelial growth rate of the pathogen during a 5-day culture period, and explored the lethal temperature. The results showed that the mycelia grew well under the photoperiod of 12 h light/12 h darkness, at 5-40 ℃(optimal temperature: 25 ℃), at pH 4-11(optimal pH: 7.0), on a variety of media(optimal medium: oatmeal agar), and in the presence of diverse carbon and nitrogen sources(optimal carbon source: soluble starch; optimal nitrogen source: sodium nitrate). The lethal temperature was verified to be 51 ℃(10 min). The conclusion is expected to lay a scientific basis for diagnosis and control of R. glutinosa leaf diseases caused by F. acuminatum.


Subject(s)
Rehmannia , Carbon , Nitrogen , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL