Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38521426

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Saponins , Triterpenes , Humans , Mice , Animals , Cisplatin/toxicity , Molecular Docking Simulation , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Saponins/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/chemistry
2.
Phytomedicine ; 128: 155355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555773

ABSTRACT

BACKGROUND: Five Polyporales mushrooms, namely Amauroderma rugosum, Ganoderma lucidum, G. resinaceum, G. sinense and Trametes versicolor, are commonly used in China for managing insomnia. However, their active components for this application are not fully understood, restricting their universal recognition. PURPOSE: In this study, we aimed to identify sedative-hypnotic compounds shared by these five Polyporales mushrooms. STUDY DESIGN AND METHODS: A UPLC-Q-TOF-MS/MS-based untargeted metabolomics, including OPLS-DA (orthogonal projection of potential structure discriminant analysis) and OPLS (orthogonal projections to latent structures) analysis together with mouse assays, were used to identify the main sedative-hypnotic compounds shared by the five Polyporales mushrooms. A pentobarbital sodium-induced sleeping model was used to investigate the sedative-hypnotic effects of the five mushrooms and their sedative-hypnotic compounds. RESULTS: Ninety-two shared compounds in the five mushrooms were identified. Mouse assays showed that these mushrooms exerted sedative-hypnotic effects, with different potencies. Six triterpenes [four ganoderic acids (B, C1, F and H) and two ganoderenic acids (A and D)] were found to be the main sedative-hypnotic compounds shared by the five mushrooms. CONCLUSION: We for the first time found that these six triterpenes contribute to the sedative-hypnotic ability of the five mushrooms. Our novel findings provide pharmacological and chemical justifications for the use of the five medicinal mushrooms in managing insomnia.


Subject(s)
Hypnotics and Sedatives , Metabolomics , Polyporales , Tandem Mass Spectrometry , Animals , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/chemistry , Mice , Metabolomics/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Polyporales/chemistry , Male , Agaricales/chemistry , Sleep/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Reishi/chemistry
3.
Article in English | MEDLINE | ID: mdl-38481114

ABSTRACT

Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine.

4.
Phytomedicine ; 121: 155111, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804819

ABSTRACT

BACKGROUND: Current evidence indicates a rising global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD), which is closely associated to conditions such as obesity, dyslipidemia, insulin resistance, and metabolic syndrome. The relationship between the gut microbiome and metabolites in NAFLD is gaining attention understanding the pathogenesis and progression of dysregulated lipid metabolism and inflammation. The Xie Zhuo Tiao Zhi (XZTZ) decoction has been employed in clinical practice for alleviating hyperlipidemia and symptoms related to metabolic disorders. However, the pharmacological mechanisms underlying the effects of XZTZ remain to be elucidated. PURPOSE: The objective of this study was to examine the pharmacological mechanisms underlying the hypolipidemic and anti-inflammatory effects of XZTZ decoction in a mouse model of NAFLD, as well as the effects of supplementing exogenous metabolites on PO induced cell damage and lipid accumulation in cultured hepatocytes. METHODS: A high-fat diet (HFD) mouse model was established to examine the effects of XZTZ through oral gavage. The general condition of mice and the protective effect of XZTZ on liver injury were evaluated using histological and biochemical methods. Hematoxylin and eosin staining (H&E) staining and oil red O staining were performed to assess inflammatory and lipid accumulation detection, and cytokine levels were quantitatively analyzed. Additionally, the study included full-length 16S rRNA sequencing, liver transcriptome analysis, and non-targeted metabolomics analysis to investigate the relationship among intestinal microbiome, liver metabolic function, and XZTZ decoction. RESULTS: XZTZ had a significant impact on the microbial community structure in NAFLD mice. Notably, the abundance of Ileibacterium valens, which was significantly enriched by XZTZ, exhibited a negative correlation with liver injury biomarkers such as, alanine transaminase (ALT) and aspartate transaminase (AST) activity. Moreover, treatment with XZTZ led to a significant enrichment of the purine metabolism pathway in liver tissue metabolites, with inosine, a purine metabolite, showing a significant positive correlation with the abundance of I. valens. XZTZ and inosine also significantly enhanced fatty acid ß-oxidation, which led to a reduction in the expression of pro-inflammatory cytokines and the inhibition of liver pyroptosis. These effects contributed to the mitigation of liver injury and hepatocyte damage, both in vivo and vitro. Furthermore, the utilization of HPLC fingerprints and UPLC-Q-TOF-MS elucidated the principal constituents within the XZTZ decoction, including naringin, neohesperidin, atractylenolide III, 23-o-Acetylalisol B, pachymic acid, and ursolic acid which are likely responsible for its therapeutic efficacy. Further investigations are imperative to fully uncover and validate the pharmacodynamic mechanisms underlying these observations. CONCLUSION: The administration of XZTZ decoction demonstrates a protective effect on the livers of NAFLD mice by inhibiting lipid accumulation and reducing hepatocyte inflammatory damage. This protective effect is mediated by the upregulation of I.valens abundance in the intestine, highlighting the importance of the gut-liver axis. Furthermore, the presesnce of inosine, adenosine, and their derivatives are important in promoting the protective effects of XZTZ. Furthermore, the in vitro approaching, we provide hitherto undocumented evidence indicating that the inosine significantly improves lipid accumulation, inflammatory damage, and pyroptosis in AML12 cells incubated with free fatty acids.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Pyroptosis , RNA, Ribosomal, 16S , Liver , Lipid Metabolism , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified/metabolism , Purines/pharmacology , Inosine/metabolism , Inosine/pharmacology , Inosine/therapeutic use , Mice, Inbred C57BL
5.
Phytomedicine ; 114: 154802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37054486

ABSTRACT

BACKGROUND: A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS: To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS: The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION: GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ethanol , Mice , Animals , Ethanol/pharmacology , Kaempferols/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/pathology , Mice, Inbred ICR , Liver , Mitogen-Activated Protein Kinase Phosphatases/pharmacology , p38 Mitogen-Activated Protein Kinases
6.
Phytomedicine ; 109: 154572, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610164

ABSTRACT

BACKGROUND: Melanoma is an aggressive malignancy with a high mortality rate. Signal transducer and activator of transcription 3 (STAT3), an oncoprotein, is considered as an effective target for treating melanoma. Chrysoeriol is a flavonoid compound, and possesses anti-tumor activity in lung cancer, breast cancer and multiple myeloma; while whether it has anti-melanoma effects is still not known. Chrysoeriol has been shown to restrain STAT3 signaling in an inflammation mouse model. PURPOSE: In this study, the anti-melanoma effects of chrysoeriol and the involvement of STAT3 signaling in these effects were investigated. STUDY DESIGN AND METHODS: CCK8 assays, 5-ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/PI staining, Western blot analyses of cleaved caspase-9 and wound healing assays were used to study the anti-melanoma effects of chrysoeriol in cell models. A B16F10 melanoma bearing mouse model was used to evaluate the in vivo anti-melanoma effects of chrysoeriol. Indicators of cell proliferation, cell apoptosis and angiogeneis in melanoma tissues were detected by immunohistochemistry (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immune cells in melanoma tissues were analyzed by flow cytometry. STAT3-overactivated cell models were used to investigate the involvement of STAT3 signaling in the anti-melanoma effects of chrysoeriol. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) assays were conducted to determine whether chrysoeriol binds to Src, an upstream kinase of STAT3. RESULTS: The results of cell experiments showed that chrysoeriol dose-dependently inhibited viability, proliferation and migration of, and induced apoptosis in, A375 and B16F10 melanoma cells. Chrysoeriol inhibited the phosphorylation of STAT3, and downregulated the expression of STAT3-target genes involved in melanoma growth and metastasis. Mouse studies showed that chrysoeriol restrained melanoma growth and tumor-related angiogenesis, and altered compositions of immune cells in melanoma microenvironment. Chrysoeriol also inhibited STAT3 signaling in B16F10 allografts. Chrysoeriol's viability-inhibiting effects were attenuated by over-activating STAT3 in A375 cells. Furthermore, chrysoeriol bound to the protein kinase domain of Src, and suppressed Src phosphorylation in melanoma cells and tissues. CONCLUSION: This study, for the first time, demonstrates that chrysoeriol has anti-melanoma effects, and these effects are partially due to inhibiting STAT3 signaling. Our findings indicate that chrysoeriol has the potential to be developed into an anti-melanoma agent.


Subject(s)
Flavones , Melanoma , Animals , Mice , STAT3 Transcription Factor/metabolism , Signal Transduction , Melanoma/drug therapy , Flavones/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis , Tumor Microenvironment
7.
Front Pharmacol ; 13: 1009229, 2022.
Article in English | MEDLINE | ID: mdl-36425580

ABSTRACT

Rescuing endothelial cells from pyroptotic cell death emerges as a potential therapeutic strategy to combat diabetic atherosclerosis. Salvianolic acid A (SAA) is a major water-soluble phenolic acid in the Salvia miltiorrhiza Bunge, which has been used in traditional Chinese medicine (TCM) and health food products for a long time. This study investigated whether SAA-regulated pyruvate kinase M2 (PKM2) functions to protect endothelial cells. In streptozotocin (STZ)-induced diabetic ApoE-/- mice subjected to a Western diet, SAA attenuated atherosclerotic plaque formation and inhibited pathological changes in the aorta. In addition, SAA significantly prevented NLRP3 inflammasome activation and pyroptosis of endothelial cells in the diabetic atherosclerotic aortic sinus or those exposed to high glucose. Mechanistically, PKM2 was verified to be the main target of SAA. We further revealed that SAA directly interacts with PKM2 at its activator pocket, inhibits phosphorylation of Y105, and hinders the nuclear translocation of PKM2. Also, SAA consistently decreased high glucose-induced overproduction of lactate and partially lactate-dependent phosphorylation of PKR (a regulator of the NLRP3 inflammasome). Further assay on Phenylalanine (PKM2 activity inhibitor) proved that SAA exhibits the function in high glucose-induced pyroptosis of endothelial cells dependently on PKM2 regulation. Furthermore, an assay on c16 (inhibitor of PKR activity) with co-phenylalanine demonstrated that the regulation of the phosphorylated PKR partially drives PKM2-dependent SAA modulation of cell pyroptosis. Therefore, this article reports on the novel function of SAA in the pyroptosis of endothelial cells and diabetic atherosclerosis, which provides important insights into immunometabolism reprogramming that is important for diabetic cardiovascular disease complications therapy.

8.
J Agric Food Chem ; 70(21): 6418-6428, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35588299

ABSTRACT

The present study aimed to investigate the effects of saturated fatty acids (SFA) and n-6 polyunsaturated fatty acids (PUFA) on alcoholic liver disease (ALD) and the underlying mechanisms. C57BL/6J male mice were randomly fed a corn oil or palm oil diet (rich in n-6 PUFA and SFA, respectively) with or without ethanol for four weeks (n = 10/group). A series of experiments in vitro with AML-12 hepatocyte were conducted to better elucidate the potential mechanisms underlying the phenomenon observed in animals. Compared with palm oil, corn oil aggravated alcohol-induced liver injury and hepatic steatosis, indicated by a histological analysis and significant elevations of plasma alanine aminotransferase and hepatic triacylglycerol (TG) level. Apoptosis-associated proteins in the ASK1-JNK pathway were significantly enhanced in the liver of mice from the corn oil + ethanol group than in the palm oil + ethanol group. The corn oil + ethanol diet also inhibited the activation of both AMPK and downstream protein acetyl-CoA carboxylase (ACC) and promoted the SREBP-1c expression, subsequently accelerating lipid synthesis. In addition, 4-hydroxynonenal (4-HNE) levels in plasma and liver were significantly upregulated in response to corn oil + ethanol feeding. Interestingly, the in vitro study showed that 4-HNE significantly attenuated cell viability, elevated the expression of cleaved-caspase 3 protein and TG level, and regulated key molecules in ASK1-JNK and AMPK pathways in a dose-dependent manner. In conclusion, the n-6 PUFA diet showed a negative effect on alcohol-induced liver injury and steatosis. It might be related to the upregulation of 4-HNE and subsequent changes of proteins, namely, ASK1, JNK, AMPK, ACC, and SREBP-1c.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fatty Liver , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Aldehydes , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Corn Oil/metabolism , Ethanol/adverse effects , Ethanol/metabolism , Fatty Acids/metabolism , Fatty Acids, Omega-6/metabolism , Fatty Liver/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Palm Oil/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism , Up-Regulation
9.
J Ethnopharmacol ; 293: 115251, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35381310

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gastritis can lead to ulcers and the development of gastric cancer. The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), a traditional Chinese medicinal herb, is prescribed for the treatment of gastric disorders, hepatitis and rheumatism. Its bio-active compounds are considered to be particularly effective in this regard. However, the molecular processes of the herb's anti-inflammatory activity remain obscure. This study elucidates a mechanism upon which an ethanolic extract of this herb (Am-EE) exerts anti-inflammation effects in RAW264.7 macrophage cells (RAW cells) stimulated by lipopolysaccharide (LPS) treatment and HCl Ethanol-stimulated gastritis rats. AIM OF THE STUDY: To investigate the anti-gastritis activities of Am-EE and explore the mode of action. MATERIALS AND METHODS: Ethanol (95%) was used to prepare Am-EE. The quality of the extract was monitored by HPLC analysis. The in vivo effects of this extract were examined in an HCl Ethanol-stimulated gastritis rat model, while LPS-stimulated RAW cells were used for in vitro assays. Cell viability and nitric oxide (NO) production were observed by MTT and Griess assays. Real-time PCR was used to examine mRNA expression. The PGE2 ELISA kit was employed to detect prostaglandin E2 (PGE2). Enzyme activities and protein contents were examined by immunoblotting. Luciferase reporter gene assays (LRA) were employed to observe nuclear transcription factor (NF)-κB activity. The SPSS (SPSS Inc., Chicago, Illinois, United States) application was used for statistical examination. RESULTS: HPLC analysis indicates that Am-EE contains atractylenolide-1 (AT-1, 1.33%, w/w) and atractylenolide-2 (AT-2, 1.25%, w/w) (Additional Figure. A1). Gastric tissue damage (induced by HCl Ethanol) was significantly decreased in SD rats following intra-gastric application of 35 mg/kg Am-EE. Indistinguishable to the anti-inflammation effects of 35 mg/kg ranitidine (gastric medication). Am-EE treatment also reduced LPS-mediated nitric oxide (NO) and prostaglandin E2 (PGE2) production. The mRNA and protein synthesis of inducible cyclooxygenase (COX)-2 and NO synthase (iNOS) was down-regulated following treatment in RAW cells. Am-EE decreased NF-κB (p50) nuclear protein levels and inhibited NF-κB-stimulated LRA activity in RAW cells. Lastly, Am-EE decreased the up-regulated levels of phosphorylated IκBα and Akt proteins in rat stomach lysates and in LPS challenged RAW cell samples. CONCLUSION: Our study illustrates that Am-EE suppresses the Akt/IκBα/NF-κB pathway and exerts an anti-inflammatory effect. These novel conclusions provide a pharmacological basis for the clinical use of the A. macrocephala rhizome in the treatment and prevention of gastritis and gastric cancer.


Subject(s)
Atractylodes , Gastritis , Plant Extracts , Stomach Neoplasms , Animals , Anti-Inflammatory Agents/pharmacology , Atractylodes/chemistry , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Ethanol/therapeutic use , Gastritis/chemically induced , Gastritis/drug therapy , Lipopolysaccharides/toxicity , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Rhizome/chemistry , Stomach Neoplasms/drug therapy
10.
Food Funct ; 13(6): 3368-3380, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35229847

ABSTRACT

N-Acetylcysteine (NAC), a well-accepted antioxidant, has been shown to protect against high fat diet (HFD)-induced obesity-associated non-alcoholic fatty liver disease (NAFLD) in mice. However, the underlying mechanism(s) of the beneficial role of NAC is still not fully understood. Our study aimed to evaluate the protective effect of NAC against NAFLD in terms of gut microbiota homeostasis. Thirty-two C57BL/6 mice were divided into four groups, including chow diet (CHOW), high-fat diet (HFD), CHOW + NAC (2 g L-1 in the drinking water), and HFD + NAC groups, and fed for 12 weeks. NAC supplementation significantly improved HFD-induced obesity, dyslipidemia, and liver dysfunction in mice. NAC also rescued HFD-caused disorder of the gut microbiota. Intriguingly, removing intestinal microorganisms by antibiotics (ABX) obviously abolished NAC supplementation-rescued hepatic steatosis and liver injury, indicating the involvement of the gut microbiota in the beneficial role of NAC. The profiles of 1145 expressed hepatic mRNAs were analyzed by whole transcriptome sequencing. Among those, 5 up-expressed mRNAs induced by a HFD, including Cidea, CD36, Acnat2, Mogat1, and GPAT3, were reversed by NAC treatment, which was further verified by a quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, those 5 mRNAs exhibited a significant (negative or positive) association with bacterial phyla or genera, including phyla Firmicutes and Bacteroidetes and genera norank_f_Erysipelotrichaceae and Lachnoclostridium, by Spearman's correlation analysis. These results suggested that the homeostasis of the gut microbiota plays an important role in NAC-improved NAFLD by affecting the enterohepatic axis.


Subject(s)
Diet, High-Fat , Non-alcoholic Fatty Liver Disease , 1-Acylglycerol-3-Phosphate O-Acyltransferase , Acetylcysteine/pharmacology , Animals , Diet, High-Fat/adverse effects , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/microbiology
11.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1017-1023, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35285202

ABSTRACT

This study explored the protective effect of atractylenolide Ⅰ(AO-Ⅰ) against acetaminophen(APAP)-induced acute liver injury(ALI) in mice and its underlying mechanism. C57 BL/6 J mice were randomly divided into a control group, an APAP group(500 mg·kg~(-1)), a low-dose combination group(500 mg·kg~(-1) APAP + 60 mg·kg~(-1) AO-Ⅰ), and a high-dose combination group(500 mg·kg~(-1) APAP + 120 mg·kg~(-1) AO-Ⅰ). ALI was induced by intraperitoneal injection of APAP(500 mg·kg~(-1)). AO-Ⅰ by intragastric administration was performed 2 hours before APAP treatment, and the control group received the same dose of solvent by intragastric administration or intraperitoneal injection. The protective effect of AO-Ⅰ against APAP-induced ALI was evaluated by detecting alanine aminotransferase(ALT) and aspartate aminotransferase(AST) levels in the plasma and H&E staining in liver tissues of mice. The malondialdehyde(MDA) and glutathione(GSH) content and catalase(CAT) activity in mouse liver tissues were detected to evaluate the effect of AO-Ⅰ on APAP-induced oxidative stress in the liver. The proteins in the liver p38 mitogen-activated protein kinase(p38 MAPK), c-jun N-terminal kinase(JNK), and nuclear factor kappa-B p65(NF-κB p65) signaling pathways were measured by Western blot, and the liver inflammatory cytokines interleukin-1ß(IL-1ß) and interleukin-6(IL-6) were detected by real-time PCR. Compared with the APAP group, the combination groups showed reduced APAP-induced ALT level and liver MDA content, potentiated liver CAT activity, and elevated GSH content. Mechanistically, AO-Ⅰ treatment significantly inhibited APAP-up-regulated MAPK phosphorylation and NF-κB p65, and significantly reduced the transcriptional activities of IL-1ß and IL-6, downstream targets of NF-κB p65. AO-Ⅰ can improve APAP-induced ALI and the underlying mechanism is related to the inhibition of the MAPK/NF-κB p65 signaling pathway in APAP-challenged mice.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Acetaminophen/adverse effects , Animals , Chemical and Drug Induced Liver Injury/drug therapy , Lactones , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Sesquiterpenes , Signal Transduction
12.
Phytomedicine ; 99: 153964, 2022 May.
Article in English | MEDLINE | ID: mdl-35180677

ABSTRACT

BACKGROUND: Doxorubicin-induced cardiotoxicity (DIC) limits the clinical application of the drug in treatment of cancers and imposes a severe health burden on the patients. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize DIC. Salidroside is a phenylpropanoid glycoside extracted from Rhodiola rosea with multiple biological effects such as anti-inflammation and antioxidant properties. However, its mechanism of action in DIC is still poorly understood. PURPOSE: The present study was aimed to investigate the role of salidroside in DIC and associated mechanism of action for the described effects. METHODS: Cardiac dysfunction was induced through treatment of mice with doxorubicin in vivo and in vitro. The mechanism of action of salidroside was investigated using western blot assay, qPCR, immunofluorescence, histochemistry, echocardiography, and high-content imaging system. RESULTS: Results of the current study found that treatment of mice with salidroside significantly improved doxorubicin-induced cardiac dysfunction, ferroptosis-like cell damage, and fibrosis in vivo. Further, it was noted that salidroside inhibited ferroptosis in vivo and in vitro by limiting iron accumulation, restoring GPX4-dependent antioxidant capacity, and preventing lipid peroxidation at the cellular or mitochondrial levels. Mechanistically, salidroside inhibited DOX-induced mitochondrial ROS, Fe2+, and lipid peroxidation as well as restored mitochondrial membrane potential by promoting mitochondrial biogenesis, improving mitochondrial iron-sulfur clusters, and restoring mitochondrial OXPHOS complexes, thereby improving mitochondrial function. In addition, AMPK is a key protein that coordinates mitochondria, metabolism, and ferroptosis. Therefore, it was found that compound C (CC), an AMPK inhibitor, disrupted the regulation of cellular lipid metabolism and mitochondrial function of salidroside as well as led to failure of the protective effect of salidroside against ferroptotic cell death. CONCLUSIONS: The present study evidently demonstrated the cardioprotective effects of salidroside against doxorubicin-induced cardiomyopathy. Further, salidroside markedly down-regulated ferroptotic cell death by activating AMPK-dependent signaling pathways including regulating abnormal fatty acid metabolism and maintaining mitochondrial function. Therefore, salidroside is can be exploited to develop a novel medication for clinical DIC and salidroside may represent a novel treatment that improves recovery from DIC by targeting ferroptosis.

13.
Fitoterapia ; 152: 104922, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33984439

ABSTRACT

The treatment of sepsis is still challenging and the liver is an important target of sepsis-related injury. Macrophages are important innate immune cells in liver, and modulation of macrophages M1/M2 polarization may be a promising strategy for septic liver injury treatment. Macrophage polarization and inflammation of liver tissue has been shown regulated by pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis and immune inflammatory pathways. Therefore, modulating PKM2-mediated immunometabolic reprogramming presents a novel strategy for inflammation-associated diseases. In this study, cynaroside, a flavonoid compound, promoted macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2, and mitigated sepsis-associated liver inflammatory damage. We established that cynaroside reduced binding of PKM2 to hypoxia-inducible factor-1α (HIF-1α) by abolishing translocation of PKM2 to the nucleus and promoting PKM2 tetramer formation, as well as suppressing phosphorylation of PKM2 at Y105 in vivo and in vitro. Moreover, cynaroside restored pyruvate kinase activity, inhibited glycolysis-related proteins including PFKFB3, HK2 and HIF-1α, and inhibited glycolysis-related hyperacetylation of HMGB1 in septic liver. Therefore, this study reports a novel function of cynaroside in hepatic macrophage polarization, and cecum ligation and puncture-induced liver injury in septic mice. The findings provide crucial information with regard to therapeutic efficacy of cynaroside in the treatment of sepsis.


Subject(s)
Glucosides/pharmacology , Liver/injuries , Luteolin/pharmacology , Macrophages/drug effects , Sepsis/drug therapy , Animals , Hypoxia-Inducible Factor 1, alpha Subunit , Liver/drug effects , Macrophage Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Phosphorylation , Pyruvate Kinase , RAW 264.7 Cells
14.
Chin J Nat Med ; 18(6): 446-459, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32503736

ABSTRACT

Dendrobium officinale Kimura et Migo (D. officinale) is a famous traditional Chinese medicine (TCM). A mixture of D. officinale and American ginseng has been shown to enhance cell-mediated immunity, humoral immunity, and monocyte/macrophage functions in mice. Here, the effects of a D. officinale and American ginseng mixture on the structure of gut microbial community in dogs were examined using high-throughput 16S rRNA gene amplicon sequencing. The data revealed that while the mixture did not change the diversity of gut microbial community significantly, differences among individuals were significantly reduced. Furthermore, the mixture-responsive operational taxonomic units (OTUs) exhibited a phase-dependent expression pattern. Fifty-five OTUs were found to exhibit a mixture-induced expression pattern, among which one third were short-chain fatty acid (SCFA)-producing genera and the others were probiotic genera included Lactobacillus spp., Sutterella, Alistipes, Anaerovorax, Bilophila, Coprococcus, Gordonibacter, Oscillibacter, among others. By contrast, 36% of the OTUs exhibiting a mixture-repressed expression pattern were disease-associated microorganisms, and six genera, namely Actinomyces, Escherichia/Shigella, Fusobacterium, Slackia, Streptococcus and Solobacterium, were associated with cancer. In addition, five genera were closely associated with diabetes, namely Collinsella, Rothia, Howardella, Slackia and Intestinibacter. Our results indicate that this D. officinale and American ginseng mixture may be used as a prebiotic agent to enhance SCFA-producing genera and prevent gut dysbiosis.


Subject(s)
Dendrobium/chemistry , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Panax/chemistry , Animals , Dogs/microbiology , Feces/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
15.
BMC Complement Altern Med ; 19(1): 219, 2019 Aug 17.
Article in English | MEDLINE | ID: mdl-31419969

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in hospitals. Penthorum chinense Pursh (PCP), employed by the Miao ethnic minority in China, presents antibacterial activities. In this study, the anti-Staphylococcus aureus activities in the pinocembrin-7-O residue-rich fraction from PCP (PGF) were evaluated and characterized. METHODS: The PGF was prepared with 70% ethanol reflux extraction followed by fractional extraction and column chromatography. Pinocembrin-7-O residue components were identified with electrospray ionization mass spectrometry (ESI-MS). Anti-S. aureus activities of the fraction and the main components were evaluated in vitro with serially diluted microbroth assays. Cytotoxicity was evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) chromogenic assays using the NCTC 1469 cell line. RESULTS: This study indicated that the PGF and three components (S1, S2, and S3) presented anti-S. aureus activities, including against clinically isolated MRSA strains. The molecular masses of S1, S2, and S3 were identical to those of pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl (HHDP)]-ß-D-glucose, pinocembrin-7-O-[3″-O-galloyl-4″,6″-(s)-HHDP]-ß-D-glucose, and Thonningianin A, respectively. The PGF, S1, S2, and S3 all presented an identical minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 and ATCC 43300, which was 62.5 µg/mL. The minimum bactericidal concentrations (MBCs) of the PGF and S3 against ATCC 25923 were 125 and 250 µg/mL, and the MBCs of the PGF, S2, and S3 against ATCC 43300 were 250, 500, and 250 µg/mL, respectively. A time-kill assay consistently indicated that none of the bacterial clones of ATCC 25923 and ATCC 43300 could survive under 2× and 4× MIC PGF treatment for 24 h, respectively. In contrast, 104 CFU (colony-forming units) of ATCC 25923 and ATCC 43300 were killed by 8× and 4× MIC S3 within 24 h, respectively. Additionally, 1×, 2×, and 4× MIC the PGF presented similar postantibiotic effects (PAEs) on the strain ATCC 25923. However, the PAE of the PGF on the strain ATCC 43300 was concentration dependent (1× < 2× < 4× MIC). Finally, the PGF (200 µg/mL) and S3 (60 µg/mL) showed no cytotoxicity against human hepatoma cells. CONCLUSIONS: The PGF and S3 from PCP present potential for the treatment of S. aureus and MRSA infections. The components S1 and S2 present inhibition activities against S. aureus.


Subject(s)
Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Saxifragales/chemistry , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Cell Line , Cell Survival/drug effects , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology , Mice , Plant Extracts/analysis , Plant Extracts/pharmacology
16.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1862-1868, 2019 May.
Article in Chinese | MEDLINE | ID: mdl-31342714

ABSTRACT

Tanshinone Ⅱ_A( Tan Ⅱ_A),the liposoluble constituents of Salvia miltiorrhiza,can not only ameliorate the lipidic metabolism and decrease the concentration of lipid peroxidation,but also resist oxidation damage,scavenge free radicals and control inflammation,with a protective effect on prognosis after liver function impairment. Therefore,the studies on the exact mechanism of Tan Ⅱ_A in protecting the liver can provide important theoretical and experimental basis for the prevention and treatment effect of Tan Ⅱ_A for liver injury. In the present study,the protective effects and mechanism of Tan Ⅱ_A on 4-hydroxynonenal( 4-HNE)-induced liver injury were investigated in vitro. Normal liver tissues NCTC 1469 cells were used to induce hepatocytes oxidative damages by 4-HNE treatment. The protective effect of Tan Ⅱ_A on hepatocytes oxidative damages was detected by release amount of lactate dehydrogenase( LDH) analysis and hoechst staining. The protein expression changes of peroxisome proliferator-activated receptor α( PPARα) and peroxisome proliferator response element( PPRE) were analyzed by Western blot analysis in NCTC 1469 cells before and after Tan Ⅱ_A treatment. The gene expression changes of fatty aldehyde dehydrogenase( FALDH) were analyzed by Real-time polymerase chain reaction( PCR) analysis. The results showed that 4-HNE increased the release amount of LDH,lowered the cell viability of NCTC 1469 cells,and Tan Ⅱ_A reversed 4-HNE-induced hepatocyte damage. Western blot analysis and RT-PCR analysis results showed that 4-HNE decreased the expression of PPARα and FALDH and increased the expression of 4-HNE. However,the expression of PPARα and FALDH were increased significantly and the expression of 4-HNE was decreased obviously after Tan Ⅱ_A treatment. This study confirmed that the curative effect of Tan Ⅱ_A was obvious on hepatocytes damage,and the mechanism may be associated with activating PPARα and FALDH expression as well as scavenging 4-HNE.


Subject(s)
Abietanes/pharmacology , Hepatocytes/drug effects , PPAR alpha/metabolism , Aldehyde Oxidoreductases/metabolism , Aldehydes , Animals , Cell Line , Lipid Peroxidation , Mice , Oxidative Stress
17.
PLoS One ; 12(10): e0186357, 2017.
Article in English | MEDLINE | ID: mdl-29020055

ABSTRACT

Alcoholic liver disease (ALD) is a type of chronic liver disease caused by long-term heavy ethanol consumption. Danshen is one of the most commonly used substances in traditional Chinese medicine and has been widely used for the treatment of various diseases, and most frequently, the ALD. The current study aims to determine the potential beneficial effect of Danshen administration on ALD and to clarify the underlying molecular mechanisms. Danshen administration improved liver pathologies of ALD, attenuated alcohol-induced increment of hepatic 4-Hydroxynonenal (4-HNE) formation, and prevented hepatic Peroxisome proliferators activated receptor alpha (PPARα) suppression in response to chronic alcohol consumption. Cell culture studies revealed that both hepatoprotective effect and increased intracellular 4-HNE clearance instigated by Danshen supplementation are PPARα-dependent. In conclusion, Danshen administration can protect against ALD via inducing PPARα activation and subsequent 4-HNE degradation.


Subject(s)
Aldehydes/metabolism , Drugs, Chinese Herbal/therapeutic use , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , PPAR alpha/metabolism , Alcoholism/drug therapy , Alcoholism/metabolism , Alcoholism/pathology , Animals , Cell Death/drug effects , Dietary Supplements , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Ethanol/administration & dosage , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Diseases, Alcoholic/metabolism , Male , Mice, Inbred C57BL , Phytotherapy , Protective Agents/administration & dosage , Protective Agents/pharmacology , Protective Agents/therapeutic use , Salvia miltiorrhiza , Triglycerides/metabolism
18.
Nutr Res ; 40: 40-47, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28473059

ABSTRACT

Lipotoxicity induced by saturated fatty acids (SFAs) plays a pathological role in the development of non-alcoholic fatty liver disease (NAFLD); however, the exact mechanism remains to be clearly elucidated. Palmitate is the most abundant SFA in the circulation and major lipotoxic inducer. Accumulating evidence supports that autophagy induction is protective against palmitate-induced cell death in a variety of cell types, including hepatocytes. Nicotinamide is the amide form of nicotinic acid (vitamin B3, Niacin) and a dietary supplementation as a source of vitamin B3. We previously reported that nicotinamide endowed hepatocytes resistance to palmitate-induced ER stress via up-regulating SIRT1, with cAMP/PKA/CREB pathway activation being a fundamental mechanism. This study was undertaken to investigate the potential anti-lipotoxic effect of nicotinamide and to elucidate underlying mechanism(s). Our data demonstrated that nicotinamide supplementation protected hepatocytes against palmitate-induced cell death. Mechanistic investigations revealed that nicotinamide supplementation activated autophagy in hepatocytes. Importantly, we showed that the anti-lipotoxic property of nicotinamide was abolished by autophagy inhibitors, suggesting that autophagy induction plays a mechanistic role in nicotinamide's anti-lipotoxic effect. Furthermore, we showed that SIRT1 inhibition blunted autophagy induction in response to nicotinamide supplementation and similarly abrogated the anti-lipotoxic effect conferred by nicotinamide supplementation. In conclusion, our data suggest that nicotinamide protects against palmitate-induced hepatotoxicity via SIRT1-dependent autophagy induction and that nicotinamide supplementation may represent a therapeutic choice for NAFLD.


Subject(s)
Autophagy/drug effects , Hepatocytes/drug effects , Niacinamide/pharmacology , Palmitates/toxicity , Sirtuin 1/metabolism , Fatty Acids/toxicity , Hep G2 Cells , Humans , Sirtuin 1/genetics , Up-Regulation
19.
J Nutr Biochem ; 24(8): 1520-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23465591

ABSTRACT

Oxidative stress plays a pathological role in the development of alcoholic liver disease. In this study, we investigated the effects of nicotinic acid (NA) supplementation on H2O2-induced cell death in hepatocytes and alcohol-induced liver injury in mice. Hepatocytes were exposed to H2O2 (0-0.4 mM) for 16 h after a 2-h pretreatment with NA (0-100 µM). Cell viability, intracellular glutathione and total NAD contents were determined. In animal experiments, male C57BL/6 mice were exposed to Lieber-De Carli liquid diet [+/- ethanol with/without NA supplementation (0.5%, w/v) for 4 weeks]. Nicotinic acid phosphoribosyltransferase (NaPRT) is the first enzyme participated in the NA metabolism, converting NA to nicotinic acid mononucleotide (NaMN). In NaPRT-expressing Hep3B cells, H2O2-induced cell death was attenuated by NA, whereas in NaPRT-lost HepG2 cells, only NaMN conferred protective effect, suggesting that NA metabolism is required for its protective action against H2O2. In Hep3B cells, NA supplementation prevented H2O2-inudced declines in intracellular total NAD and GSH/GSSG ratios. Further mechanistic investigations revealed that conservation of Akt activity contributed to NA's protective effect against H2O2-inudced cell death. In alcohol-fed mice, NA supplementation attenuated liver injury induced by chronic alcohol exposure, which was associated with alleviated hepatic lipid peroxidation and increased liver GSH concentrations. In conclusion, our findings indicate that exogenous NA supplementation may be an ideal choice for the treatment of liver diseases that involve oxidative stress.


Subject(s)
Cell Death/drug effects , Hepatocytes/drug effects , Liver Diseases, Alcoholic/prevention & control , Niacin/pharmacology , Oxidative Stress/drug effects , Animals , Glutathione/metabolism , Hep G2 Cells , Hepatocytes/pathology , Humans , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Liver/cytology , Liver/drug effects , Liver/pathology , Liver Diseases, Alcoholic/pathology , Male , Mice , Mice, Inbred C57BL
20.
Am J Pathol ; 181(5): 1702-10, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22982442

ABSTRACT

Long-term alcohol exposure sensitizes hepatocytes to tumor necrosis factor-α (TNF) cytotoxicity. 4-Hydroxynonenal (4-HNE) is one of the most abundant and reactive lipid peroxides. Increased hepatic 4-HNE contents present in both human alcoholics and alcohol-fed animals. In the present study, we investigated the effects of intracellular 4-HNE accumulation on TNF-induced hepatotoxicity and its potential implication in the pathogenesis of alcoholic liver disease. Male C57BL/6 mice were fed an ethanol-containing or a control diet for 5 weeks. Long-term alcohol exposure increased hepatic 4-HNE and TNF levels. Cell culture studies revealed that 4-HNE, at nontoxic concentrations, sensitized hepatocytes to TNF killing, which was associated with suppressed NF-κB transactivity. Further investigation demonstrated that 4-HNE prevented TNF-induced inhibitor of κBα phosphorylation without affecting upstream IκB kinase activity. An immunoprecipitation assay revealed that increased 4-HNE content was associated with increased formation of 4-HNE-inhibitor of κBα adduction in both 4-HNE-treated hepatocytes and in the livers of alcohol-fed mice. Prevention of intracellular 4-HNE accumulation by bezafibrate, a peroxisome proliferator-activated receptor-α agonist, protected hepatocytes from TNF killing via NF-κB activation. Supplementation of N-acetylcysteine, a glutathione precursor, conferred a protective effect on alcohol-induced liver injury in mice, was associated with decreased hepatic 4-HNE formation, and improved hepatic NF-κB activity. In conclusion, increased 4-HNE accumulation represents a potent and clinically relevant sensitizer to TNF-induced hepatotoxicity. These data support the notion that removal of intracellular 4-HNE can serve as a potential therapeutic option for alcoholic liver disease.


Subject(s)
Aldehydes/toxicity , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver/injuries , NF-kappa B/metabolism , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Animals , Bezafibrate/pharmacology , Bezafibrate/therapeutic use , Caspases/metabolism , Cell Death/drug effects , Cytoprotection/drug effects , Disease Models, Animal , Enzyme Activation/drug effects , Ethanol/adverse effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , I-kappa B Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/drug effects , Liver/enzymology , Liver/pathology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Male , Mice , Mice, Inbred C57BL , NF-KappaB Inhibitor alpha , NF-kappa B/genetics , Phosphorylation/drug effects , Time Factors , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL