Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 71(40): 14649-14665, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755883

ABSTRACT

In this study, blueberry (Vaccinium ssp.) anthocyanins (VA) and blackberry (Rubus L.) anthocyanins (RA) were used to investigate the effects on metabolic syndrome (MetS) and the potential mechanisms. Importantly, all of the data presented in this study were obtained from experiments conducted on mice. As a result, VA and RA reduced body weight gain and fat accumulation while improving liver damage, inflammation, glucose, and lipid metabolism induced by a high-fat diet. Moreover, VA and RA regulated the gut microbiota composition, decreasing the pro-obesity and proinflammation bacteria taxa, such as the phylum Actinobacterium and the genera Allobaculum and Bifidobacterium, and increasing those negatively associated with obesity and inflammation, such as the phylum Bacteroidetes and the genera Prevotella and Oscillospira. Additionally, the supplementation with VA and RA reversed the elevated levels of valeric, caproic, and isovaleric acids observed in the high-fat diet (HFD) group, bringing them closer to the levels observed in the Chow group. This reversal indicated that alterations in the composition and abundance of gut microbiota may contribute to the restoration of short-chain fatty acids (SCFAs) levels. Additionally, PICRUSt2 exhibited that cyanamino acid metabolism and betalain biosynthesis might be the major metabolic pathways in the HVA group compared with the HFD group, while in the HRA group, it was the phosphotransferase system. These findings suggest that VA and RA can ameliorate MetS by modulating the gut microbiota and production of SCFAs.

2.
Food Funct ; 14(9): 4380-4391, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37092717

ABSTRACT

Prunus mume is an ancient medicinal herb and food that are commonly used in Asian countries with high nutritional ingredients and biological activities. Polyphenols are important functional components in Prunus mume. To obtain a more efficient extraction process of Prunus mume polyphenols, a single-factor test and response surface method were used. After extraction and purification, the final polyphenol content of Prunus mume (L1) was up to 90%. Biological experiments showed that L1 had high anticancer activity against HeLa (125.28 µg mL-1), HepG2 (117.24 µg mL-1), MCF-7 (170.19 µg mL-1), and A549 (121.78 µg mL-1) in vitro by MTT assay. The combination of DDP and DOX significantly enhanced the anticancer activity of the four cell lines, especially L1-DOX had the smallest IC50 value of 0.04 µg mL-1 against HepG2 cells, indicating the combination of drugs had synergistic effects. It is further demonstrated that L1 could inhibit cell proliferation by inducing apoptosis with ROS detection and confocal fluorescence images. The relative tumor proliferation rate (T/C) was 40.6%, and the tumor inhibition rate was 57.9%, indicating L1 to have no significant toxicity but high anti-HepG2 activity in vivo. Although the study is very limited, it is anticipated to provide a reference for further exploration of the functionality of the plant.


Subject(s)
Plants, Medicinal , Prunus , Polyphenols/pharmacology , Apoptosis
3.
PLoS One ; 10(8): e0135160, 2015.
Article in English | MEDLINE | ID: mdl-26288011

ABSTRACT

Application of phosphorus (P) fertilizers to P-deficient soils can also result in P accumulation. In this study, soil P status and P uptake by apple trees were investigated in 5-, 10-, and 15-year-old orchards in the semi-arid Loess Plateau, China, and subset soils with different soil P statuses (14-90 Olsen-P mg kg(-1)) were selected to evaluate the characteristic P adsorption. Due to the low P-use efficiency (4-6%), total soil P increased from 540 mg kg(-1) to 904 mg kg(-1), Olsen-P ranged from 3.4 mg kg(-1) to 30.7 mg kg(-1), and CaCl2-P increased from less than 0.1 mg kg(-1) to 0.66 mg kg(-1) under continuous P fertilization. The P sorption isotherms for each apple orchard were found to fit the Langmuir isotherm model (R2 = 0.91-0.98). K (binding energy) and Qm (P sorption maximum) decreased, whereas DPS (degree of phosphorus sorption) increased with increasing P concentration. CaCl2-P increased significantly with the increase of Olsen-P, especially above the change point of 46.1 mg kg(-1). Application of surplus P could result in P enrichment in P-deficient soil which has high P fixation capacity, thus posing a significant environmental risk.


Subject(s)
Calcium Chloride/analysis , Fertilizers/adverse effects , Malus/metabolism , Phosphorus/analysis , Soil/chemistry , Calcium Chloride/chemistry , China , Models, Theoretical , Phosphorus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL