Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fitoterapia ; 172: 105718, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931719

ABSTRACT

The strategies or drugs for preventing and treating Hyperuricemia (HUA) are still lacking. As a traditional Chinese medicine (TCM) with a profound history, Ampelopsis grossedentata has been shown to play diverse biological roles. The purpose of the present study was to evaluate hypouricemic effect of A. grossedentata, and investigate its involved material basis and mechanism. A HUA mice model was established to evaluate the therapeutic effects of A. grossedentata. And then some extracts from A. grossedentata were prepared, isolated and analyzed. Furthermore, network pharmacology, based on the above results, was used to discover potential active ingredients and therapeutic targets, and they were further verified and explored by molecular docking and in vitro experiments. In vivo experiments showed that A. grossedentata exerted hypouricemic effect on mice of HUA. The core active ingredients (quercetin, myricetin and dihydromyricetin etc.) and core targets (PTGS2, XOD and ABCG2 etc.) for A. grossedentata to treat HUA were predicted by network pharmacology. And molecular docking showed that the spontaneous binding activities of above components and targets were marvelous. In vitro experiments further demonstrated that A. grossedentata exerted hypouricemic effect by decreasing the levels of UA, XOD, antioxidant factors, inflammatory factors, GLUT9 and URAT1 in HK-2 cells of HUA. Taken together, this study integrates multi-level interaction network with in vivo/vitro experiments to systematically reveal the material basis and mechanism of A. grossedentata in treating HUA, which provides a scientific basis for further study of A. grossedentata and HUA.


Subject(s)
Ampelopsis , Hyperuricemia , Mice , Animals , Hyperuricemia/drug therapy , Ampelopsis/chemistry , Molecular Docking Simulation , Molecular Structure , Antioxidants/pharmacology
2.
Yakugaku Zasshi ; 127(3): 527-32, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17329938

ABSTRACT

Cyclooxygenase 2 (COX-2) pathway inhibitors were regarded as promising nonsteroidal antiinflammatory drugs (NSAIDs). We discovered that the COX-2 pathway in A549 cells, a human lung cancer cell line, was activated by serum-free stimulation, and a drug screening model for NSAIDs was established based on this principle with simple performance and sufficient reliability. The COX-2 pathway was activated by treating with serum-free medium for 12 h. The activated cells were incubated with NS398 (selective COX-2 inhibitor), SC560 (selective COX-1 inhibitor), acetyl salicylic acid (ASA) (nonselective COX inhibitor) at 37 degrees C for 15 min. Then the cells were incubated with 10 microM of arachidonic acid (AA) for another 30 min prostaglandin E2 and 6-keto-prostaglandin F(1alpha) were assayed in an enzyme immunoassay (EIA). The results showed that the COX-2 pathway was dominant in A549 cells whether activated by serum-free medium or not, and the COX-1 pathway could be ignored. The model accepted the positive inhibition threshold as NS398 2 microM; if a compound (10 microM) inhibited COX-2 pathway more than NS398 (2 microM), it was regarded as a hit. The COX-2 pathway inhibition experiment showed that the Z;-factor of the screening model was 0.62, which suggests that the model is suitable for COX-2 pathway inhibitor screening.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Evaluation, Preclinical/methods , Nitrobenzenes/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , 6-Ketoprostaglandin F1 alpha/analysis , Animals , Aspirin/pharmacology , Culture Media, Serum-Free , Dinoprostone/analysis , Dose-Response Relationship, Drug , Humans , Immunoenzyme Techniques , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL