Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neurochem Int ; 176: 105725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561151

ABSTRACT

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Subject(s)
Anticonvulsants , Brain , Deferasirox , Epilepsy , Iron Chelating Agents , Iron , Membrane Proteins , Animals , Male , Mice , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Brain/drug effects , Brain/metabolism , Deferasirox/pharmacology , Epilepsy/drug therapy , Epilepsy/metabolism , Homeostasis/drug effects , Homeostasis/physiology , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Kindling, Neurologic/drug effects , Pentylenetetrazole/toxicity , Rats, Sprague-Dawley , Membrane Proteins/drug effects , Membrane Proteins/metabolism
2.
Front Pharmacol ; 13: 841990, 2022.
Article in English | MEDLINE | ID: mdl-35401199

ABSTRACT

Traditional herbal medicine (THM) is used worldwide for its safety and effectiveness against various diseases. Huoxiang Zhengqi (HXZQ) is an extensively used Chinese THM formula targeting gastrointestinal disordered gastroenteritis via regulating the intestinal microbiome/immuno-microenvironment. However, the specific mechanisms remain largely unexplored, besides as a lifestyle drug, its safety on the gut microbiome homeostasis has never been investigated. In this study, the effects of HXZQ on the gut microbiome of healthy adults were investigated for the first time, and the antibiotic-induced gut microbiota dysbiosis mice model was applied for verification. Based on healthy adults, our results revealed that HXZQ exhibited mild and positive impacts on the bacterial diversity and the composition of the gut microbiome in a healthy state. As for an unhealthy state of the gut microbiome (with low bacterial diversity and deficient compositions), HXZQ significantly restored the bacterial diversity and recovered the abundance of Bacteroidetes. In the antibiotic-induced mice model, HXZQ distinctly revived the deficient gut microbial compositions impaired by antibiotics. At the genus level, the abundances that responded most strongly and positively to HXZQ were Bifidobacterium in healthy adults and Muribaculaceae, Lactobacillus, and Akkermansia in mice. In contrast, the abundance of Blautia in healthy adults, Enterococcus, and Klebsiella in mice showed inversely associated with HXZQ administration. At last, HXZQ might exhibit an anti-inflammatory effect by regulating the concentration of interleukin-6 in plasma while causing no significant changes in the colon tissue structure in mice. In conclusion, our results elucidate that the safety of HXZQ in daily use further reveals the modulatory effects of HXZQ on gut microbial community structure. These results will provide new insights into the interaction of THM and gut microbiome homeostasis and clues about the safe use of THM as a lifestyle drug for its further development.

3.
Phytomedicine ; 99: 153968, 2022 May.
Article in English | MEDLINE | ID: mdl-35183933

ABSTRACT

BACKGROUND: Huoxiangzhengqi oral liquid (HX), a pharmaceutical product made from traditional Chinese medicine formulas, has been commonly used in household medication for gastrointestinal disorders, but the mode of action remains largely unclear. PURPOSE: This study aims to investigate whether pretreatment with HX prevents lipopolysaccharide (LPS)-induced adverse effects and the potential mechanisms involved. METHODS: Seven-week-old male C57BL/6J mice were orally administered low (1.3 ml/kg) and high doses (2.6 ml/kg) of HX for 7 days, and subsequently subjected to a single dose of LPS at 6 mg/kg. Dexamethasone served as the positive control. Each group had ten animals. RESULTS: The data demonstrated that either a low or high dose of HX significantly reduced the levels of inflammation induced by LPS in both small intestinal and cortical tissues. LPS profoundly decreased the richness and evenness of the microbiota and disrupted the composition of the intestinal microbial community, but pretreatment with HX did not successfully prevent dysbiosis. No significant improvements in HX against LPS were observed in intestinal local immunity or the secretion of partial gut-brain peptides. In addition, pretreatment with HX prevented the alterations in the expression levels of proteins related to the NF-κB pathway, including phospho-p38, p38, phospho-p44/42, p44/42, p50 and p65 induced by LPS. CONCLUSION: Herein, we demonstrated for the first time that the preventive effects of HX against LPS mainly occur through the inhibition of inflammation. These findings provide novel evidence that HX may serve as a new agent for the prevention of gastrointestinal inflammation-related disorders.

SELECTION OF CITATIONS
SEARCH DETAIL