Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Hortic Res ; 5: 30, 2018.
Article in English | MEDLINE | ID: mdl-29872535

ABSTRACT

Huanglongbing (HLB), a destructive plant bacterial disease, severely impedes worldwide citrus production. In our previous reports, we revealed the molecular mechanisms of host plant responses that underlie thermotherapy against HLB. In this study, we investigated the molecular mechanism underlying heat or tetracycline treatments on the HLB bacterium, 'Candidatus Liberibacter asiaticus' (Las) by focusing on Las prophage/phage conversion under stress conditions. By comparing the prophage FP1 and FP2 copy number to the copy number of 16S rDNA in HLB-affected plants, we found that the relative copy number of both FP1 and FP2 increased significantly, ranging from 3.4- to 6.7-fold change when Las-infected samples underwent a temperature shift from 23 to 37, 42 or 45 °C. When treated with tetracycline at 50-150 and 200-250 µg/ml, respectively, the relative copy number of both FP1 and FP2 increased by 3.4- to 6.0-fold. In addition, analyses of Las prophage structural gene and antirepressor gene copy numbers showed similar trends for all treatments. Furthermore, transmission electron microscopy provided direct evidence of lysogenic to lytic conversion upon temperature increase. These results not only provide new insight into the molecular mechanisms underlying heat or tetracycline treatment but also suggest a novel HLB control strategy by enhancing the endogenous conversion from Las prophages to phages.

2.
Front Plant Sci ; 9: 1890, 2018.
Article in English | MEDLINE | ID: mdl-30766544

ABSTRACT

Citrus huanglongbing (HLB) is extremely difficult to control because the psyllid-transmitted bacterial pathogen resides inside the citrus phloem and the disease is systemic. In Florida, the nine billion dollar citrus industry has been significantly impacted by severe HLB epidemics. To combat citrus HLB, in this study we implemented an integrated strategy that includes chemotherapy, thermotherapy, and additional nutrition treatment in three different field trials over three consecutive years. In these trials, only trees already showing HLB symptoms with Ct values ranging from 25.1 to 27.7 were selected for treatments. To assess the complex interactions, we used several methods for evaluating the effectiveness of integrated management, including the slopes (b) of the Ct increase (dy/dt), the pathogenic index (PI) and the decline index (DI) from Ct value and tree scores, and the therapeutic efficacies from PI and DI. This comprehensive analysis showed that most of the tested chemicals were effective to some degree in killing or suppressing the Las bacterium, with higher therapeutic efficacies seen for Grove B, where citrus trees were severely affected by HLB, and it had a higher number of psyllids, relative to Grove E and P in the first 2 years. Trunk-injected penicillin G potassium was the most effective chemical treatment in all groves, followed by Oxytetracycline Calcium Complex, and Silver Nitrate delivered as foliar sprays. Although the steam heat treatment and additional nutrition did not eliminate or suppress Las over the long term, these treatments did positively affect tree growth and recovery in the short term. Overall, our results provide new insights into HLB control method and strategy for integrated management for HLB epidemic plantations.

3.
Hortic Res ; 4: 17054, 2017.
Article in English | MEDLINE | ID: mdl-28955443

ABSTRACT

Huanglongbing (HLB), a systemic and destructive disease of citrus, is associated with 'Candidatus Liberibacter asiaticus' (Las) in the United States. Our earlier work has shown that Las bacteria were significantly reduced or eliminated when potted HLB-affected citrus were continuously exposed to high temperatures of 40 to 42 °C for a minimum of 48 h. To determine the feasibility and effectiveness of solar thermotherapy in the field, portable plastic enclosures were placed over commercial and residential citrus, exposing trees to high temperatures through solarization. Within 3-6 weeks after treatment, most trees responded with vigorous new growth. Las titer in new growth was greatly reduced for 18-36 months after treatment. Unlike with potted trees, exposure to high heat did not eradicate the Las population under field conditions. This may be attributed to reduced temperatures at night in the field compared to continuous high temperature exposure that can be maintained in growth chambers, and the failure to achieve therapeutic temperatures in the root zone. Despite the presence of Las in heat-treated commercial citrus, many trees produced abundant flush and grew vigorously for 2 to 3 years after treatment. Transcriptome analysis comparing healthy trees to HLB-affected citrus both before and after heat treatment demonstrated that post-treatment transcriptional expression patterns more closely resembled the expression patterns of healthy controls for most differentially expressed genes and that genes involved with plant-bacterium interactions are upregulated after heat treatment. Overall, these results indicate that solar thermotherapy can be an effective component of an integrated control strategy for citrus HLB.

4.
BMC Plant Biol ; 16(1): 253, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27842496

ABSTRACT

BACKGROUND: Citrus Huanglongbing (HLB), which is linked to the bacterial pathogen 'Ca. Liberibacter asiaticus' (Las), is the most devastating disease of citrus plants, and longer-term control measures via breeding or genetic engineering have been unwieldy because all cultivated citrus species are susceptible to the disease. However, the degree of susceptibility varies among citrus species, which has prompted efforts to identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs. Plant exposure to one form of stress has been shown to serendipitously induce innate resistance to other forms of stress and a recent study showed that continuous heat treatment (40 to 42 °C) reduced Las titer and HLB-associated symptoms in citrus seedlings. The goal of the present study was to apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants. Healthy or Las-infected citrus grapefruit plants were exposed to room temperature or to continuous heat treatment of 40 °C for 6 days. RESULTS: An exhaustive total protein extraction process facilitated the identification of 107 differentially-expressed proteins in response to Las and/or heat treatment, which included a strong up-regulation of chaperones including small (23.6, 18.5 and 17.9 kDa) heat shock proteins, a HSP70-like protein and a ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)-binding 60 kDa chaperonin, particularly in response to heat treatment. Other proteins that were generally down-regulated due to Las infection but up-regulated in response to heat treatment include RuBisCO activase, chlorophyll a/b binding protein, glucosidase II beta subunit-like protein, a putative lipoxygenase protein, a ferritin-like protein, and a glutathione S-transferase. CONCLUSIONS: The differentially-expressed proteins identified in this study highlights a premier characterization of the molecular mechanisms potentially involved in the reversal of Las-induced pathogenicity processes in citrus plants and are hence proposed targets for application towards the development of cisgenic Las-resistant/tolerant citrus plants.


Subject(s)
Citrus/chemistry , Plant Diseases/microbiology , Plant Proteins/chemistry , Rhizobiaceae/physiology , Citrus/genetics , Citrus/metabolism , Citrus/microbiology , Electrophoresis, Gel, Two-Dimensional , Hot Temperature , Mass Spectrometry , Plant Diseases/genetics , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics
5.
PLoS One ; 11(5): e0155472, 2016.
Article in English | MEDLINE | ID: mdl-27171468

ABSTRACT

Huanglongbing (HLB) is a serious citrus disease that threatens the citrus industry. In previous studies, sulfonamide antibiotics and heat treatment suppressed 'Candidatus Liberibacter asiaticus' (Las), but did not completely eliminate the Las. Furthermore, there are few reports studying the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics. In this study, combinations of heat (45°C or 40°C) and sulfonamide treatment (sulfathiazole sodium-STZ, or sulfadimethoxine sodium-SDX) were applied to HLB-affected citrus. The bacterial microbiome of HLB-affected citrus following thermotherapy and/or chemotherapy was characterized by PhyloChipTMG3-based metagenomics. Our results showed that the combination of thermotherapy at 45°C and chemotherapy with STZ and SDX was more effective against HLB than thermotherapy alone, chemotherapy alone, or a combination of thermotherapy at 40°C and chemotherapy. The PhyloChipTMG3-based results indicated that 311 empirical Operational Taxonomic Units (eOTUs) were detected in 26 phyla. Cyanobacteria (18.01%) were dominant after thermo-chemotherapy. Thermotherapy at 45°C decreased eOTUs (64.43%) in leaf samples, compared with thermotherapy at 40°C (73.96%) or without thermotherapy (90.68%) and it also reduced bacterial family biodiversity. The eOTU in phylum Proteobacteria was reduced significantly and eOTU_28, representing "Candidatus Liberibacter," was not detected following thermotherapy at 45°C. Following antibiotic treatment with SDX and STZ, there was enhanced abundance of specific eOTUs belonging to the families Streptomycetaceae, Desulfobacteraceae, Chitinophagaceae, and Xanthomonadaceae, which may be implicated in increased resistance to plant pathogens. Our study further develops an integrated strategy for combating HLB, and also provides new insight into the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Citrus/drug effects , Citrus/microbiology , Hyperthermia, Induced , Microbiota/drug effects , Plant Diseases/microbiology , Sulfonamides/pharmacology , Biodiversity , Phylogeny , Temperature
6.
Phytopathology ; 103(1): 15-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23035631

ABSTRACT

Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide. The three known causal agents of HLB are species of α-proteobacteria: 'Candidatus Liberibacter asiaticus', 'Ca. L. africanus', and 'Ca. L. americanus'. Previous studies have found distinct variations in temperature sensitivity and tolerance among these species. Here, we describe the use of controlled heat treatments to cure HLB caused by 'Ca. L. asiaticus', the most prevalent and heat-tolerant species. Using temperature-controlled growth chambers, we evaluated the time duration and temperature required to suppress or eliminate the 'Ca. L. asiaticus' bacterium in citrus, using various temperature treatments for time periods ranging from 2 days to 4 months. Results of quantitative polymerase chain reaction (qPCR) after treatment illustrate significant decreases in the 'Ca. L. asiaticus' bacterial titer, combined with healthy vigorous growth by all surviving trees. Repeated qPCR testing confirmed that previously infected, heat-treated plants showed no detectable levels of 'Ca. L. asiaticus', while untreated control plants remained highly infected. Continuous thermal exposure to 40 to 42°C for a minimum of 48 h was sufficient to significantly reduce titer or eliminate 'Ca. L. asiaticus' bacteria entirely in HLB-affected citrus seedlings. This method may be useful for the control of 'Ca. Liberibacter'-infected plants in nursery and greenhouse settings.


Subject(s)
Catharanthus/microbiology , Citrus/microbiology , Hot Temperature , Plant Diseases/therapy , Rhizobiaceae/physiology , Catharanthus/growth & development , Citrus/growth & development , DNA, Bacterial/genetics , Environment, Controlled , Feasibility Studies , Phenotype , Plant Diseases/microbiology , Plant Leaves/growth & development , Plant Leaves/microbiology , Real-Time Polymerase Chain Reaction , Rhizobiaceae/genetics , Trees , Wood
7.
PLoS One ; 6(4): e19135, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21552483

ABSTRACT

Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with 'Candidatus Liberibacter solanacearum', a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for 'Ca. L. solanacearum'. Here we present the sequence of the 1.26 Mbp metagenome of 'Ca. L. solanacearum', based on DNA isolated from potato psyllids. The coding inventory of the 'Ca. L. solanacearum' genome was analyzed and compared to related Rhizobiaceae to better understand 'Ca. L. solanacearum' physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, 'Ca. L. solanacearum' is related to 'Ca. L. asiaticus', a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to 'Ca. L. asiaticus', 'Ca. L. solanacearum' probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes.


Subject(s)
Genome, Bacterial/genetics , Plant Diseases/microbiology , Proteobacteria/genetics , Solanum tuberosum/microbiology , Amino Acids/metabolism , Biological Transport/genetics , Carbohydrate Metabolism/genetics , Cell Division/genetics , Cell Proliferation , Citrus/microbiology , DNA Replication/genetics , DNA, Bacterial/biosynthesis , DNA, Bacterial/metabolism , Energy Metabolism/genetics , Genomics , Nitrogen/metabolism , Nucleotides/metabolism , Prophages/genetics , Proteobacteria/cytology , Proteobacteria/metabolism , Proteobacteria/physiology , Sulfur/metabolism , Vitamins/biosynthesis , Vitamins/metabolism
8.
J Microbiol Methods ; 78(1): 59-65, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19409423

ABSTRACT

The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated with potato ZC, and will be very useful for the potato quarantine programs and seed potato certification programs to ensure the availability of clean seed potato stocks and also for epidemiological studies on the disease.


Subject(s)
Plant Diseases/microbiology , Polymerase Chain Reaction/methods , Rhizobiaceae/isolation & purification , Solanum tuberosum/microbiology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Plants/microbiology , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/classification , Rhizobiaceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL