Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
mBio ; 15(3): e0339623, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38353560

ABSTRACT

Enterococcus faecium is a member of the human gastrointestinal (GI) microbiota but can also cause invasive infections, especially in immunocompromised hosts. Enterococci display intrinsic resistance to many antibiotics, and most clinical E. faecium isolates have acquired vancomycin resistance, leaving clinicians with a limited repertoire of effective antibiotics. As such, vancomycin-resistant E. faecium (VREfm) has become an increasingly difficult to treat nosocomial pathogen that is often associated with treatment failure and recurrent infections. We followed a patient with recurrent E. faecium bloodstream infections (BSIs) of increasing severity, which ultimately became unresponsive to antibiotic combination therapy over the course of 7 years. Whole-genome sequencing (WGS) showed that the patient was colonized with closely related E. faecium strains for at least 2 years and that invasive isolates likely emerged from a large E. faecium population in the patient's gastrointestinal (GI) tract. The addition of bacteriophage (phage) therapy to the patient's antimicrobial regimen was associated with several months of clinical improvement and reduced intestinal burden of VRE and E. faecium. In vitro analysis showed that antibiotic and phage combination therapy improved bacterial growth suppression compared to therapy with either alone. Eventual E. faecium BSI recurrence was not associated with the development of antibiotic or phage resistance in post-treatment isolates. However, an anti-phage-neutralizing antibody response occurred that coincided with an increased relative abundance of VRE in the GI tract, both of which may have contributed to clinical failure. Taken together, these findings highlight the potential utility and limitations of phage therapy to treat antibiotic-resistant enterococcal infections. IMPORTANCE: Phage therapy is an emerging therapeutic approach for treating bacterial infections that do not respond to traditional antibiotics. The addition of phage therapy to systemic antibiotics to treat a patient with recurrent E. faecium infections that were non-responsive to antibiotics alone resulted in fewer hospitalizations and improved the patient's quality of life. Combination phage and antibiotic therapy reduced E. faecium and VRE abundance in the patient's stool. Eventually, an anti-phage antibody response emerged that was able to neutralize phage activity, which may have limited clinical efficacy. This study demonstrates the potential of phages as an additional option in the antimicrobial toolbox for treating invasive enterococcal infections and highlights the need for further investigation to ensure phage therapy can be deployed for maximum clinical benefit.


Subject(s)
Bacteremia , Bacteriophages , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Anti-Bacterial Agents/therapeutic use , Bacteriophages/physiology , Quality of Life , Enterococcus , Bacteremia/microbiology , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests
2.
Infect Immun ; 87(6)2019 06.
Article in English | MEDLINE | ID: mdl-30936157

ABSTRACT

Enterococcus faecalis is a human intestinal pathobiont with intrinsic and acquired resistance to many antibiotics, including vancomycin. Nature provides a diverse and virtually untapped repertoire of bacterial viruses, or bacteriophages (phages), that could be harnessed to combat multidrug-resistant enterococcal infections. Bacterial phage resistance represents a potential barrier to the implementation of phage therapy, emphasizing the importance of investigating the molecular mechanisms underlying the emergence of phage resistance. Using a cohort of 19 environmental lytic phages with tropism against E. faecalis, we found that these phages require the enterococcal polysaccharide antigen (Epa) for productive infection. Epa is a surface-exposed heteroglycan synthesized by enzymes encoded by both conserved and strain-specific genes. We discovered that exposure to phage selective pressure favors mutation in nonconserved epa genes both in culture and in a mouse model of intestinal colonization. Despite gaining phage resistance, epa mutant strains exhibited a loss of resistance to cell wall-targeting antibiotics. Finally, we show that an E. faecalisepa mutant strain is deficient in intestinal colonization, cannot expand its population upon antibiotic-driven intestinal dysbiosis, and fails to be efficiently transmitted to juvenile mice following birth. This study demonstrates that phage therapy could be used in combination with antibiotics to target enterococci within a dysbiotic microbiota. Enterococci that evade phage therapy by developing resistance may be less fit at colonizing the intestine and sensitized to vancomycin, preventing their overgrowth during antibiotic treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriophages/physiology , Enterococcus faecalis/drug effects , Enterococcus faecalis/virology , Enterococcus faecium/virology , Gram-Positive Bacterial Infections/therapy , Intestines/microbiology , Animals , Biological Therapy , Enterococcus faecalis/immunology , Enterococcus faecalis/physiology , Enterococcus faecium/drug effects , Enterococcus faecium/immunology , Enterococcus faecium/physiology , Female , Gram-Positive Bacterial Infections/microbiology , Humans , Male , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Vancomycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL