Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Metab ; 72: 101711, 2023 06.
Article in English | MEDLINE | ID: mdl-36958422

ABSTRACT

PURPOSE: Heart diseases are the leading cause of death worldwide. Metabolic interventions via ketogenic diets (KDs) have been used for decades to treat epilepsy, and more recently, also diabetes and obesity, as common comorbidities of heart diseases. However, recent reports linked KDs, based on long-chain triglycerides (LCTs), to cardiac fibrosis and a reduction of heart function in rodents. As intervention using medium-chain triglycerides (MCTs) was recently shown to be beneficial in murine cardiac reperfusion injury, the question arises as to what extent the fatty acid (FA)-composition in a KD alters molecular markers of FA-oxidation (FAO) and modulates cardiac fibrotic outcome. METHODS: The effects of LCT-KD as well as an LCT/MCT mix (8:1 ketogenic ratio) on cardiac tissue integrity and the plasma metabolome were assessed in adult male C57/BL6NRJ mice after eight weeks on the respective diet. RESULTS: Both KDs resulted in increased amount of collagen fibers and cardiac tissue was immunologically indistinguishable between groups. MCT supplementation resulted in i) profound changes in plasma metabolome, ii) reduced hydroxymethylglutaryl-CoA synthase upregulation, and mitofusin 2 downregulation, iii) abrogation of LCT-induced mitochondrial enlargement, and iv) enhanced FAO profile. Contrary to literature, mitochondrial biogenesis was unaffected by KDs. We propose that the observed tissue remodeling is caused by the accumulation of 4-hydroxy-2-nonenal protein adducts, despite an inconspicuous nuclear factor (erythroid-derived 2)-like 2 pathway. CONCLUSION: We conclude that regardless of the generally favorable effects of MCTs, they cannot inhibit 4-hydroxy-2-nonenal adduct formation and fibrotic tissue formation in this setting. Furthermore, we support the burgeoning concern about the effect of KDs on the cardiac safety profile.


Subject(s)
Diet, Ketogenic , Heart Diseases , Male , Mice , Animals , Diet, Ketogenic/adverse effects , Diet, Ketogenic/methods , Triglycerides/metabolism , Fatty Acids , Fibrosis
2.
Front Nutr ; 9: 984715, 2022.
Article in English | MEDLINE | ID: mdl-36118778

ABSTRACT

Regular consumption of hen eggs can help to prevent deficiencies of essential nutrients, such as essential amino acids, vitamin A and E or trace elements zinc and selenium, for vulnerable populations. This study focused on assessing the nutritional value of spray-dried eggs, favored by their manufacturability, storability and ease of addition to (complementary) foods. Using a wide range of analytical techniques, we recorded and compared the nutrient profiles of commercially produced pasteurized whole eggs and their respective powder samples spray-dried at 160°C. Important nutrients that were not significantly affected by spray-drying include total fat content, several amino acids, α- and δ-tocopherol, lutein, zeaxanthin, essential trace elements and cobalamin. The most notable mean losses were found for unsaturated fatty acids, e.g., linoleic (by -38.7%, from 4.11 ± 0.45 to 2.52 ± 0.75 g/100 g DM) and linolenic acid (by -60.8%, from 0.76 ± 0.05 to 0.30 ± 0.04 g/100 g DM). Despite recording significant retinol losses in two out of three batches, the overall low reduction of -14% recommend spray-dried eggs as a valuable source of vitamin A. A daily intake of spray-dried egg powder corresponding to one medium sized egg meets dietary reference values for children, e.g., by 100% for vitamin E, by 24% for retinol, by 61% for selenium and by 22% for zinc. In conclusion, even though a dry weight comparison favors supplementation with pasteurized whole eggs, our results demonstrate a high potential for spray-dried eggs as nutritional supplement. However, the spray-drying process should be optimized toward higher retentions of unsaturated fatty acids and retinol.

3.
J Agric Food Chem ; 68(20): 5741-5751, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32338890

ABSTRACT

For the accurate quantitation of kokumi-enhancing and bitter-tasting octadecadien-12-ynoic and octadecadienoic acids in chanterelles (Cantharellus cibarius Fr.), a sensitive ultra-high-performance liquid chromatography-differential ion mobility spectrometry-tandem mass spectrometry method was developed. On the basis of these quantitative data and the taste thresholds, dose-over-threshold factors were calculated to determine the contribution of these sensometabolites to the kokumi and bitter taste of chanterelles; e.g., 14,15-dehydrocrepenynic acid (3) and (9Z,15E)-14-oxooctadeca-9,15-dien-12-ynoic acid (7) were identified as key kokumi substances in raw chanterelles. Quantitative profiling of these compounds in various mushroom species demonstrated a unique accumulation of octadecadien-12-ynoic acids in Cantharellus. Furthermore, storage experiments highlighted dynamic processes, including the biosynthesis of these substances as a result of lipid peroxidation mechanisms.


Subject(s)
Basidiomycota/chemistry , Chromatography, High Pressure Liquid/methods , Fatty Acids, Unsaturated/chemistry , Flavoring Agents/chemistry , Mass Spectrometry/methods , Plant Extracts/chemistry
4.
Nutrients ; 12(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979019

ABSTRACT

Higher fiber intake may confer beneficial effects on health. Our objective was to investigate the impact of 10 g extrinsic wheat fiber on fecal bulk. Therefore, we performed two randomized intervention studies in which we provided extrinsic wheat fiber-enriched products or appropriate control products for five days together with normal diet. In one trial, 10 participants received fiber-enriched food products, whereas in the second study, 19 participants supplemented their daily diet with fiber-enriched drinks. The main outcome variable of this intervention was fecal bulk. Other outcomes were gut microbiota composition, short chain fatty acids in feces, and stool consistency and frequency. Fecal wet weight was significantly increased (p < 0.02) with extrinsic wheat fiber-enriched foods. In contrast, ingestion of extrinsic wheat fiber in the form of drinks did not significantly change fecal wet weight. In both groups, fecal dry weight was not altered upon extrinsic wheat fiber supplementation. However, the intake of fiber-enriched foods resulted in higher acetic acid levels in feces compared to fiber-enriched drinks. Regarding gut microbiota profiles, extrinsic wheat fiber-enriched food products were not associated with substantial alterations. In conclusion, 10 g extrinsic wheat fiber added to a normal diet increased fecal bulk if administered in a solid food matrix, but not if applied in the form of drinks. DRKS, DRKS00015792.Registered 30 October 2018.


Subject(s)
Beverages/analysis , Dietary Fiber/administration & dosage , Dietary Supplements , Feces/chemistry , Food, Fortified/analysis , Triticum , Adult , Diet/methods , Female , Gastrointestinal Microbiome/drug effects , Humans , Male , Young Adult
5.
J Agric Food Chem ; 68(38): 10361-10373, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-31841329

ABSTRACT

Activity-guided fractionation of poppy seed (Papaver somniferum L.) extracts and analysis of fatty acid oxidation model experiments, followed by liquid chromatography time-of-flight mass spectrometry, tandem mass spectrometry, and one-/two-dimensional nuclear magnetic resonance experiments, revealed the chemical structures of five bitter-tasting fatty acids (1-5), three monoglycerides (6-8), six C18-lipidoxidation products (9-14), and four lipid oxidation degradation products (15 and 17-19) as well as two previously unreported monoglyceride oxidation degradation products, namely, 9-(2',3'-dihydroxypropyloxy)-9-oxononaic acid (1-azeloyl-rac-glycerol, 16) and 1-(2',3'-dihydroxypropyl)-8-(5″-oxo-2″,5″-dihydrofruan-2″-yl)-octonoate (1-ODFO-rac-glycerol, 20). Sensory studies exhibited low bitter taste threshold concentrations between 0.08 and 0.29 mmol/L, particularly for the higher oxidated C18-fatty acids trihydroxyoctadecenoic acid (THOE, 12), 12,13-dihydroxy-9-oxo-10-octadecenoic acid (12,13-diOH-9-oxo, 13), and 9,10-dihydroxy-13-oxo-11-octadecenoic acid (9,10-diOH-13-oxo, 14) as well as for the lipidoxidation degradation products 4-hydroxy-2-noneic acid (4-HNA, 17), 4-hydroxy-2-docecendienoic acid (HDdiA, 18), and 8-(5'-oxo-2',5'-dihydrofuran-2'-yl)-octanoic acid (ODFO, 20).


Subject(s)
Flavoring Agents/chemistry , Oxylipins/chemistry , Papaver/chemistry , Plant Extracts/chemistry , Seeds/chemistry , Tandem Mass Spectrometry
6.
Microbiome ; 6(1): 134, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30071904

ABSTRACT

BACKGROUND: As the gut microbiota contributes to metabolic health, it is important to determine specific diet-microbiota interactions that influence host metabolism. Bile acids and dietary fat source can alter phenotypes of diet-induced obesity, but the interplay with intestinal microorganisms is unclear. Here, we investigated metabolic consequences of diets enriched in primary bile acids with or without addition of lard or palm oil, and studied gut microbiota structure and functions in mice. RESULTS: In combination with bile acids, dietary lard fed to male C57BL/6N mice for a period of 8 weeks enhanced fat mass accumulation in colonized, but not in germ-free mice when compared to palm oil. This was associated with impaired glucose tolerance, lower fasting insulin levels, lower counts of enteroendocrine cells, fatty liver, and elevated amounts of hepatic triglycerides, cholesteryl esters, and monounsaturated fatty acids. Lard- and bile acid-fed mice were characterized by shifts in dominant gut bacterial communities, including decreased relative abundances of Lachnospiraceae and increased occurrence of Desulfovibrionaceae and the species Clostridium lactatifermentans and Flintibacter butyricus. Metatranscriptomic analysis revealed shifts in microbial functions, including lipid and amino acid metabolism. CONCLUSIONS: Caution is required when interpreting data from diet-induced obesity models due to varying effects of dietary fat source. Detrimental metabolic consequences of a diet enriched with lard and primary bile acids were dependent on microbial colonization of the host and were linked to hepatic lipid rearrangements and to alterations of dominant bacterial communities in the cecum.


Subject(s)
Bacteria/classification , Bile Acids and Salts/analysis , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Obesity/chemically induced , Amino Acids/metabolism , Animals , Bacteria/drug effects , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Dietary Fats/adverse effects , Gene Expression Profiling , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Palm Oil/adverse effects , Phylogeny , RNA, Ribosomal, 16S/genetics
7.
J Agric Food Chem ; 63(48): 10492-9, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26585544

ABSTRACT

Sensory-guided fractionation of a roasted coffee beverage revealed a highly polar, bitter-tasting subfraction, from which the furokaurane glucoside mozambioside was isolated and identified in its chemical structure by means of HDMS and NMR spectra. Sensory evaluation revealed a bitter taste recognition threshold of 60 (± 10) µmol/L. UPLC-HDMS quantitation of raw coffee beans showed that Arabica coffees contained 396-1188 nmol/g mozambioside, whereas only traces (<5 nmol/g) were detected in Robusta coffees, thus suggesting that mozambioside can be used as an analytical marker for Arabica coffee. Roasted Arabica contained a substantially reduced concentration (232 ± 37 nmol/g), indicating partial degradation of mozambioside during coffee roasting. Mozambioside was nearly quantitatively extracted into the aqueous brew during coffee-making (86-98%).


Subject(s)
Coffea/chemistry , Coffee/chemistry , Glucosides/chemistry , Plant Extracts/chemistry , Taste , Chromatography, High Pressure Liquid , Cooking , Hot Temperature , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Seeds/chemistry , Species Specificity
8.
Anal Bioanal Chem ; 405(26): 8487-503, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23982107

ABSTRACT

Habitual consumption of medium amounts of coffee over the whole life-span is hypothesized to reduce the risk to develop diabetes type 2 (DM2) and Alzheimer's disease (AD). To identify putative bioactive coffee-derived metabolites, first, pooled urine from coffee drinkers and non-coffee drinkers were screened by UPLC-HDMS. After statistical data analysis, trigonelline, dimethylxanthines and monomethylxanthines, and ferulic acid conjugates were identified as the major metabolites found after coffee consumption. For quantitative analysis of these markers in body fluids, targeted methods based on stable-isotope dilution and UPLC-MS/MS were developed and applied to plasma samples from a coffee intervention study (n = 13 volunteers) who consumed a single cup of caffeinated coffee brew after a 10-day washout period. Chlorogenic acid-derived metabolites were found to be separated into two groups showing different pharmacokinetic properties. The first group comprised, e.g., ferulic acid and feruloyl sulfate and showed early appearance in the plasma (~1 h). The second group contained particularly chlorogenic acid metabolites formed by the intestinal microflora, appearing late and persisting in the plasma (>6 h). Trigonelline appeared early but persisted with calculated half-life times ~5 h. The plasma levels of caffeine metabolites significantly and progressively increased 2-4 h after coffee consumption and did not reach c max within the time frame of the study. The pharmacokinetic profiles suggest that particularly trigonelline, caffeine, its metabolites, as well as late appearing dihydroferulic acid, feruloylglycine and dihydroferulic acid sulfate formed from chlorogenic acid by the intestinal microflora accumulate in the plasma due to their long half-life times during habitual consumption of several cups of coffee distributed over the day. Since some of these metabolites have been reported to show antioxidant effects in vivo, antioxidant-response-element activating potential, and neuroprotective properties, respectively, some of these key metabolites might account for the inflammation- and DM2/AD risk reducing effects reported for habitual life time consumption of coffee.


Subject(s)
Alkaloids/metabolism , Caffeine/metabolism , Chlorogenic Acid/metabolism , Coffee/metabolism , Coumaric Acids/metabolism , Xanthines/metabolism , Adult , Alkaloids/blood , Alkaloids/urine , Caffeine/blood , Caffeine/urine , Chlorogenic Acid/blood , Chlorogenic Acid/urine , Coumaric Acids/blood , Coumaric Acids/urine , Female , Humans , Male , Tandem Mass Spectrometry , Xanthines/blood , Xanthines/urine , Young Adult
9.
J Agric Food Chem ; 60(29): 7211-7, 2012 Jul 25.
Article in English | MEDLINE | ID: mdl-22762370

ABSTRACT

Angiotensin-converting enzyme (ACE), playing a crucial role in the renin angiotensin aldosterone system, is well-known to catalyze the conversion of the decapeptide angiotensin I into the physiologically active octapeptide angiotensin II, triggering blood pressure increasing mechanisms. To meet the demand for natural phytochemicals as antihypertensive agents in functional food development, extracts prepared from a series of vegetables were screened for their ACE-inhibitory activity by means of a LC-MS/MS-based in vitro assay. By far the highest ACE inhibition was found for a lettuce extract, in which the most active compound was located by means of activity-guided fractionation. LC-MS, NMR spectroscopy, and hydrolysis experiments followed by ion chromatography led to the unequivocal identification of the ACE inhibitor as the previously not reported (S)-malic acid 1'-O-ß-gentiobioside. This glycoside represents a novel class of ACE-inhibiting phytochemicals with a low IC(50) value of 27.8 µM. First incubation experiments in saliva and aqueous hydrochloric acid demonstrated the stability of (S)-malic acid 1'-O-ß-gentiobioside against salivary glycosidases and stomach acid.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/analysis , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Glycosides/analysis , Glycosides/pharmacology , Lactuca/chemistry , Malates/analysis , Malates/pharmacology , Antihypertensive Agents , Drug Stability , Functional Food/analysis , Plant Extracts/chemistry , Saliva , Vegetables/chemistry
10.
J Agric Food Chem ; 58(13): 7930-9, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20527768

ABSTRACT

Although the complex taste profile of beer is well accepted to be reflected by the molecular blueprint of its sensometabolites, the knowledge available on the process-induced transformation of hop-derived phytochemicals into key sensometabolites during beer manufacturing is far from comprehensive. The objective of the present investigation was, therefore, to develop and apply a suitable HPLC-MS/MS method for the simultaneous and comprehensive quantitative monitoring of a total of 69 hop-derived sensometabolites in selected intermediary products throughout a full-scale beer manufacturing process. After data normalization, the individual sensometabolites were arranged into different clusters by means of agglomerative hierarchical analysis and visualized using a sensomics heatmap to verify the structure-specific reaction routes proposed for their formation during the beer brewing process.


Subject(s)
Beer/analysis , Chromatography, High Pressure Liquid/methods , Humulus/chemistry , Plant Extracts/analysis , Tandem Mass Spectrometry/methods , Beer/microbiology , Fermentation , Humans , Humulus/microbiology , Taste , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL