Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Hum Brain Mapp ; 37(1): 351-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26503033

ABSTRACT

The mismatch negativity (MMN) evoked potential, a preattentive brain response to a discriminable change in auditory stimulation, is significantly reduced in psychosis. Glutamatergic theories of psychosis propose that hypofunction of NMDA receptors (on pyramidal cells and inhibitory interneurons) causes a loss of synaptic gain control. We measured changes in neuronal effective connectivity underlying the MMN using dynamic causal modeling (DCM), where the gain (excitability) of superficial pyramidal cells is explicitly parameterised. EEG data were obtained during a MMN task--for 24 patients with psychosis, 25 of their first-degree unaffected relatives, and 35 controls--and DCM was used to estimate the excitability (modeled as self-inhibition) of (source-specific) superficial pyramidal populations. The MMN sources, based on previous research, included primary and secondary auditory cortices, and the right inferior frontal gyrus. Both patients with psychosis and unaffected relatives (to a lesser degree) showed increased excitability in right inferior frontal gyrus across task conditions, compared to controls. Furthermore, in the same region, both patients and their relatives showed a reversal of the normal response to deviant stimuli; that is, a decrease in excitability in comparison to standard conditions. Our results suggest that psychosis and genetic risk for the illness are associated with both context-dependent (condition-specific) and context-independent abnormalities of the excitability of superficial pyramidal cell populations in the MMN paradigm. These abnormalities could relate to NMDA receptor hypofunction on both pyramidal cells and inhibitory interneurons, and appear to be linked to the genetic aetiology of the illness, thereby constituting potential endophenotypes for psychosis.


Subject(s)
Brain Injuries/complications , Brain Injuries/pathology , Contingent Negative Variation/physiology , Evoked Potentials, Auditory/physiology , Family , Prefrontal Cortex/physiopathology , Psychotic Disorders/complications , Acoustic Stimulation , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Models, Theoretical , Nonlinear Dynamics , Prefrontal Cortex/pathology , Young Adult
2.
Schizophr Res ; 161(2-3): 277-82, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25556079

ABSTRACT

BACKGROUND: Individuals with an "Attenuated Psychosis Syndrome" (APS) have a 20-40% chance of developing a psychotic disorder within two years; however it is difficult to predict which of them will become ill on the basis of their clinical symptoms alone. We examined whether P50 gating deficits could help to discriminate individuals with APS and also those who are particularly likely to make a transition to psychosis. METHOD: 36 cases meeting PACE (Personal Assessment and Crisis Evaluation) criteria for the APS, all free of antipsychotics, and 60 controls performed an auditory conditioning-testing experiment while their electroencephalogram was recorded. The P50 ratio and its C-T difference were compared between groups. Subjects received follow-up for up to 2 years to determine their clinical outcome. RESULTS: The P50 ratio was significantly higher and C-T difference lower in the APS group compared to controls. Of the individuals with APS who completed the follow-up (n=36), nine (25%) developed psychosis. P50 ratio and the C-T difference did not significantly differ between those individuals who developed psychosis and those who did not within the APS group. CONCLUSION: P50 deficits appear to be associated with the pre-clinical phase of psychosis. However, due to the limitations of the study and its sample size, replication in an independent cohort is necessary, to clarify the role of P50 deficits in illness progression and whether this inexpensive and non-invasive EEG marker could be of clinical value in the prediction of psychosis outcomes amongst populations at risk.


Subject(s)
Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Psychotic Disorders/complications , Sensory Gating/physiology , Acoustic Stimulation , Adolescent , Adult , Electroencephalography , Evoked Potentials/physiology , Female , Humans , Male , Psychiatric Status Rating Scales , ROC Curve , Young Adult
3.
BMC Psychiatry ; 14: 321, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407081

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a common mental illness with high lifetime prevalence close to 20%. Positron emission tomography (PET) studies have reported decreased prefrontal, insular and limbic cerebral glucose metabolism in depressed patients compared with healthy controls. However, the literature has not always been consistent. To evaluate current evidence from PET studies, we conducted a voxel-based meta-analysis of cerebral metabolism in MDD. METHOD: Data were collected from databases including PubMed and Web of Science, with the last report up to April 2013. Voxel-based meta-analyses were performed using the revised activation likelihood estimation (ALE) software. RESULTS: Ten whole-brain-based FDG-PET studies in MDD were included in the meta-analysis, comprising 188 MDD patients and 169 healthy controls. ALE analyses showed the brain metabolism in bilateral insula, left lentiform nucleus putamen and extra-nuclear, right caudate and cingulate gyrus were significantly decreased. However, the brain activity in right thalamus pulvinar and declive of posterior lobe, left culmen of vermis in anterior lobe were significantly increased in MDD patients. CONCLUSION: Our meta-analysis demonstrates the specific brain regions where possible dysfunctions are more consistently reported in MDD patients. Altered metabolism in insula, limbic system, basal ganglia, thalamus, and cerebellum and thus these regions are likely to play a key role in the pathophysiology of depression.


Subject(s)
Cerebral Cortex/metabolism , Depressive Disorder, Major/metabolism , Positron-Emission Tomography/methods , Basal Ganglia/metabolism , Blood Glucose/metabolism , Depressive Disorder, Major/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Likelihood Functions , Limbic System/metabolism , Male , Radiopharmaceuticals , Thalamus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL