Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Autism Res ; 17(3): 512-528, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279628

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child , Humans , Magnetic Resonance Spectroscopy/methods , Autistic Disorder/metabolism , Brain , Glutathione/metabolism , gamma-Aminobutyric Acid/metabolism
2.
Article in English | MEDLINE | ID: mdl-37952692

ABSTRACT

BACKGROUND: The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS: The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS: We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS: Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS: Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.


Subject(s)
Motor Cortex , Adult , Humans , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Neural Inhibition/physiology , Evoked Potentials, Motor/physiology , Glutamic Acid/metabolism , Transcranial Magnetic Stimulation/methods , Basal Ganglia/diagnostic imaging , gamma-Aminobutyric Acid/metabolism
3.
NMR Biomed ; 36(7): e4907, 2023 07.
Article in English | MEDLINE | ID: mdl-36651918

ABSTRACT

The present study characterized associations among brain metabolite levels, applying bivariate and multivariate (i.e., factor analysis) statistical methods to total creatine (tCr)-referenced estimates of the major Point RESolved Spectroscopy (PRESS) proton MR spectroscopy (1 H-MRS) metabolites (i.e., total NAA/tCr, total choline/tCr, myo-inositol/tCr, glutamate + glutamine/tCr) acquired at 3 T from medial parietal lobe in a large (n = 299), well-characterized international cohort of healthy volunteers. Results supported the hypothesis that 1 H-MRS-measured metabolite estimates are moderately intercorrelated (Mr = 0.42, SDr = 0.11, ps < 0.001), with more than one-half (i.e., 57%) of the total variability in metabolite estimates explained by a single common factor. Older age was significantly associated with lower levels of the identified common metabolite variance (CMV) factor (ß = -0.09, p = 0.048), despite not being associated with levels of any individual metabolite. Holding CMV factor levels constant, females had significantly lower levels of total choline (i.e., unique metabolite variance; ß = -0.19, p < 0.001), mirroring significant bivariate correlations between sex and total choline reported previously. Supplementary analysis of water-referenced metabolite estimates (i.e., including tCr/water) demonstrated lower, although still substantial, intercorrelations among metabolites, with 37% of total metabolite variance explained by a single common factor. If replicated, these results would suggest that applied 1 H-MRS researchers shift their analytical framework from examining bivariate associations between individual metabolites and specialty-dependent (e.g., clinical, research) variables of interest (e.g., using t-tests) to examining multivariable (i.e., covariate) associations between multiple metabolites and specialty-dependent variables of interest (e.g., using multiple regression).


Subject(s)
Cytomegalovirus Infections , Protons , Female , Humans , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy/methods , Creatine/metabolism , Brain/diagnostic imaging , Brain/metabolism , Choline/metabolism , Inositol/metabolism , Aspartic Acid , Water/metabolism , Cytomegalovirus Infections/metabolism , Receptors, Antigen, T-Cell/metabolism
4.
Cereb Cortex ; 33(7): 3922-3933, 2023 03 21.
Article in English | MEDLINE | ID: mdl-35972405

ABSTRACT

Tourette syndrome (TS) is a childhood-onset disorder in which tics are often preceded by premonitory sensory urges. More severe urges correlate with worse tics and can render behavioral therapies less effective. The supplementary motor area (SMA) is a prefrontal region believed to influence tic performance. To determine whether cortical physiological properties correlate with urges and tics, we evaluated, in 8-12-year-old right-handed TS children (n = 17), correlations of urge and tic severity scores and compared both to cortical excitability (CE) and short- and long-interval cortical inhibition (SICI and LICI) in both left and right M1. We also modeled these M1 transcranial magnetic stimulation measures with SMA gamma-amino butyric acid (GABA) levels in TS and typically developing control children (n = 16). Urge intensity correlated strongly with tic scores. More severe urges correlated with lower CE and less LICI in both right and left M1. Unexpectedly, in right M1, lower CE and less LICI correlated with less severe tics. We found that SMA GABA modulation of right, but not left, M1 CE and LICI differed in TS. We conclude that in young children with TS, lower right M1 CE and LICI, modulated by SMA GABA, may reflect compensatory mechanisms to diminish tics in response to premonitory urges.


Subject(s)
Motor Cortex , Tics , Tourette Syndrome , Humans , Child , Child, Preschool , Tics/complications , Tourette Syndrome/complications , Inhibition, Psychological , gamma-Aminobutyric Acid
5.
Neurobiol Dis ; 174: 105881, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36202290

ABSTRACT

Fragile-X syndrome (FXS) and Neurofibromatosis of type 1 (NF-1) are two monogenic disorders sharing neurobehavioral symptoms and pathophysiological mechanisms. Namely, preclinical models of both conditions show overactivity of the mTOR signaling pathway as well as GABAergic alterations. However, despite its potential clinical relevance for these disorders, the GABAergic system has not been systematically studied in humans. In the present study, we used an extensive transcranial magnetic stimulation (TMS) assessment battery in combination with magnetic resonance spectroscopy (MRS) to provide a comprehensive picture of the main inhibitory neurotransmitter system in patients with FXS and NF1. Forty-three participants took part in the TMS session (15 FXS, 10 NF1, 18 controls) and 36 in the MRS session (11 FXS, 14 NF1, 11 controls). Results show that, in comparison to healthy control participants, individuals with FXS and NF1 display lower GABA concentration levels as measured with MRS. TMS result show that FXS patients present increased GABAB-mediated inhibition compared to controls and NF1 patients, and that GABAA-mediated intracortical inhibition was associated with increased excitability specifically in the FXS groups. In line with previous reports, correlational analyses between MRS and TMS measures did not show significant relationships between GABA-related metrics, but several TMS measures correlated with glutamate+glutamine (Glx) levels assessed with MRS. Overall, these results suggest a partial overlap in neurophysiological alterations involving the GABA system in NF1 and FXS, and support the hypothesis that MRS and TMS assess different aspects of the neurotransmitter systems.


Subject(s)
Fragile X Syndrome , Motor Cortex , Neurofibromatosis 1 , Humans , Neural Inhibition/physiology , gamma-Aminobutyric Acid/metabolism , Transcranial Magnetic Stimulation , Neurofibromatosis 1/metabolism
6.
Commun Biol ; 5(1): 426, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523951

ABSTRACT

The flexible adjustment of ongoing behavior challenges the nervous system's dynamic control mechanisms and has shown to be specifically susceptible to age-related decline. Previous work links endogenous gamma-aminobutyric acid (GABA) with behavioral efficiency across perceptual and cognitive domains, with potentially the strongest impact on those behaviors that require a high level of dynamic control. Our analysis integrated behavior and modulation of interhemispheric phase-based connectivity during dynamic motor-state transitions with endogenous GABA concentration in adult human volunteers. We provide converging evidence for age-related differences in the preferred state of endogenous GABA concentration for more flexible behavior. We suggest that the increased interhemispheric connectivity observed in the older participants represents a compensatory neural mechanism caused by phase-entrainment in homotopic motor cortices. This mechanism appears to be most relevant in the presence of a less optimal tuning of the inhibitory tone as observed during healthy aging to uphold the required flexibility of behavioral action. Future work needs to validate the relevance of this interplay between neural connectivity and GABAergic inhibition for other domains of flexible human behavior.


Subject(s)
Motor Cortex , gamma-Aminobutyric Acid , Adult , Humans , Longitudinal Studies , Motor Cortex/physiology
7.
Mov Disord ; 37(3): 563-573, 2022 03.
Article in English | MEDLINE | ID: mdl-34854494

ABSTRACT

BACKGROUND: Individuals with Tourette syndrome (TS) often report that they express tics as a means of alleviating the experience of unpleasant sensations. These sensations are perceived as an urge to act and are referred to as premonitory urges. Premonitory urges have been the focus of recent efforts to develop interventions to reduce tic expression in those with TS. OBJECTIVE: The aim of this study was to examine the contribution of brain γ-aminobutyric acid (GABA) and glutamate levels of the right primary sensorimotor cortex (SM1), supplementary motor area (SMA), and insular cortex (insula) to tic and urge severity in children with TS. METHODS: Edited magnetic resonance spectroscopy was used to assess GABA+ (GABA + macromolecules) and Glx (glutamate + glutamine) of the right SM1, SMA, and insula in 68 children with TS (MAge = 10.59, SDAge = 1.33) and 41 typically developing control subjects (MAge = 10.26, SDAge = 2.21). We first compared GABA+ and Glx levels of these brain regions between groups. We then explored the association between regional GABA+ and Glx levels with urge and tic severity. RESULTS: GABA+ and Glx of the right SM1, SMA, and insula were comparable between the children with TS and typically developing control subjects. In children with TS, lower levels of SMA GABA+ were associated with more severe and more frequent premonitory urges. Neither GABA+ nor Glx levels were associated with tic severity. CONCLUSIONS: These results broadly support the role of GABAergic neurotransmission within the SMA in the experience of premonitory urges in children with TS. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Motor Cortex , Sensorimotor Cortex , Tic Disorders , Tics , Tourette Syndrome , Child , Child, Preschool , Glutamic Acid , Humans , Infant , Motor Cortex/diagnostic imaging , Tic Disorders/complications , Tics/complications , Tourette Syndrome/complications , gamma-Aminobutyric Acid
8.
J Appl Clin Med Phys ; 22(11): 151-164, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34633758

ABSTRACT

PURPOSE: To evaluate the effectiveness of Kami Guibi-tang (KGT) in the treatment of mild cognitive impairment (MCI) using magnetic resonance imaging (MRI) on brain metabolites, neurotransmitter, and cerebral blood flow (CBF). METHODS: We randomly allocated a total of 30 MCI patients to a KGT (N = 16) or a placebo (N = 14) group and performed MRI scans before and after 24 weeks of treatment. The participants underwent brain magnetic resonance spectroscopy and MRI scans to obtain brain metabolites using Point-RESolved Spectroscopy (PRESS) single-voxel spectroscopy, gamma-aminobutyric acid (GABA) neurotransmitter using Mescher-Garwood PRESS, and CBF using pseudocontinuous arterial spin labeling sequences using a 3.0 Tesla MRI system. We analyzed metabolite and neurotransmitter levels and CBF using repeated-measure analysis of variance to evaluate between-subject group effect, within-subject treatment condition effect, and interaction of group by condition (group x condition). RESULTS: The GABA+/creatine (Cr) ratio values were not significantly different between the before and after treatment conditions. The glutamate complex/Cr ratio difference before and after treatment was lower in the KGT group than in the placebo group, but was not statistically significant (p = 0.077). The result of region of interest-based CBF measurement showed that CBF values were significantly lower after treatment at Cluster 2 for the KGT group (p = 0.003) and the placebo group (p = 0.011), at hippocampus for the KGT group (p = 0.004) and the placebo group (p = 0.008), and at the fusiform gyrus for the KGT group (p = 0.002). Furthermore, the absolute CBF difference before and after treatment in the fusiform gyrus was significantly lower in the KGT group than in the placebo group (p = 0.024). CONCLUSIONS: Although a KGT treatment of 24 weeks showed some significant impact on the level of CBF, the Korean version of the mini-mental state examination score was not significantly different between before and after treatment conditions, indicating that there was no memory function improvement after treatment in amnestic MCI patients. Therefore, further studies should be performed with a relatively larger population and extending the duration of the KGT treatment.


Subject(s)
Cognitive Dysfunction , Brain/diagnostic imaging , Cerebrovascular Circulation , Cognitive Dysfunction/drug therapy , Drugs, Chinese Herbal , Humans , Magnetic Resonance Imaging , gamma-Aminobutyric Acid
9.
Neuroimage ; 233: 117930, 2021 06.
Article in English | MEDLINE | ID: mdl-33711485

ABSTRACT

Balance between inhibitory and excitatory neurotransmitter systems and the protective role of the major antioxidant glutathione (GSH) are central to early healthy brain development. Disruption has been implicated in the early life pathophysiology of psychiatric disorders and neurodevelopmental conditions including Autism Spectrum Disorder. Edited magnetic resonance spectroscopy (MRS) methods such as HERMES have great potential for providing important new non-invasive insights into these crucial processes in human infancy. In this work, we describe a systematic approach to minimise the impact of specific technical challenges inherent to acquiring MRS data in a neonatal population, including automatic segmentation, full tissue-correction and optimised GABA+ fitting and consider the minimum requirements for a robust edited-MRS acquisition. With this approach we report for the first time simultaneous GABA+, Glx (glutamate + glutamine) and GSH concentrations in the neonatal brain (n = 18) in two distinct regions (thalamus and anterior cingulate cortex (ACC)) using edited MRS at 3T. The improved sensitivity provided by our method allows specific regional neurochemical differences to be identified including: significantly lower Glx and GSH ratios to total creatine in the thalamus compared to the ACC (p < 0.001 for both), and significantly higher GSH levels in the ACC following tissue-correction (p < 0.01). Furthermore, in contrast to adult GABA+ which can typically be accurately fitted with a single peak, all neonate spectra displayed a characteristic doublet GABA+ peak at 3 ppm, indicating a lower macromolecule (MM) contribution to the 3 ppm signal in neonates. Relatively high group-level variance shows the need to maximise voxel size/acquisition time in edited neonatal MRS acquisitions for robust estimation of metabolites. Application of this method to study how these levels and balance are altered by early-life brain injury or genetic risk can provide important new knowledge about the pathophysiology underlying neurodevelopmental disorders.


Subject(s)
Brain/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Glutathione/metabolism , Magnetic Resonance Spectroscopy/methods , gamma-Aminobutyric Acid/metabolism , Brain/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Humans , Infant, Newborn , Male , Thalamus/diagnostic imaging , Thalamus/metabolism
10.
Neuroimage ; 231: 117871, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33607278

ABSTRACT

Although gamma aminobutyric acid (GABA) is of particular importance for efficient motor functioning, very little is known about the relationship between regional GABA levels and motor performance. Some studies suggest this relation to be subject to age-related differences even though literature is scarce. To clarify this matter, we employed a comprehensive approach and investigated GABA levels within young and older adults across multiple motor tasks as well as multiple brain regions. Specifically, 30 young and 30 older adults completed a task battery of three different bimanual tasks. Furthermore, GABA levels were obtained within bilateral primary sensorimotor cortex (SM1), bilateral dorsal premotor cortex, the supplementary motor area and bilateral dorsolateral prefrontal cortex (DLPFC) using magnetic resonance spectroscopy. Results indicated that older adults, as compared to their younger counterparts, performed worse on all bimanual tasks and exhibited lower GABA levels in bilateral SM1 only. Moreover, GABA levels across the motor network and DLPFC were differentially associated with performance in young as opposed to older adults on a manual dexterity and bimanual coordination task but not a finger tapping task. Specifically, whereas higher GABA levels related to better manual dexterity within older adults, higher GABA levels predicted poorer bimanual coordination performance in young adults. By determining a task-specific and age-dependent association between GABA levels across the cortical motor network and performance on distinct bimanual tasks, the current study advances insights in the role of GABA for motor performance in the context of aging.


Subject(s)
Aging/metabolism , Brain/metabolism , Functional Laterality/physiology , Magnetic Resonance Spectroscopy/methods , Psychomotor Performance/physiology , gamma-Aminobutyric Acid/metabolism , Adult , Aged , Female , Humans , Male , Middle Aged , Movement/physiology , Young Adult
11.
Arthritis Rheumatol ; 73(7): 1318-1328, 2021 07.
Article in English | MEDLINE | ID: mdl-33314799

ABSTRACT

OBJECTIVE: Acupuncture is a complex multicomponent treatment that has shown promise in the treatment of fibromyalgia (FM). However, clinical trials have shown mixed results, possibly due to heterogeneous methodology and lack of understanding of the underlying mechanism of action. The present study was undertaken to understand the specific contribution of somatosensory afference to improvements in clinical pain, and the specific brain circuits involved. METHODS: Seventy-six patients with FM were randomized to receive either electroacupuncture (EA), with somatosensory afference, or mock laser acupuncture (ML), with no somatosensory afference, twice a week over 8 treatments. Patients with FM in each treatment group were assessed for pain severity levels, measured using Brief Pain Inventory (BPI) scores, and for levels of functional brain network connectivity, assessed using resting state functional magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy in the right anterior insula, before and after treatment. RESULTS: Fibromyalgia patients who received EA therapy experienced a greater reduction in pain severity, as measured by the BPI, compared to patients who received ML therapy (mean difference in BPI from pre- to posttreatment was -1.14 in the EA group versus -0.46 in the ML group; P for group × time interaction = 0.036). Participants receiving EA treatment, as compared to ML treatment, also exhibited resting functional connectivity between the primary somatosensory cortical representation of the leg (S1leg ; i.e. primary somatosensory subregion activated by EA) and the anterior insula. Increased S1leg -anterior insula connectivity was associated with both reduced levels of pain severity as measured by the BPI (r = -0.44, P = 0.01) and increased levels of γ-aminobutyric acid (GABA+) in the anterior insula (r = 0.48, P = 0.046) following EA therapy. Moreover, increased levels of GABA+ in the anterior insula were associated with reduced levels of pain severity as measured by the BPI (r = -0.59, P = 0.01). Finally, post-EA treatment changes in levels of GABA+ in the anterior insula mediated the relationship between changes in S1leg -anterior insula connectivity and pain severity on the BPI (bootstrap confidence interval -0.533, -0.037). CONCLUSION: The somatosensory component of acupuncture modulates primary somatosensory functional connectivity associated with insular neurochemistry to reduce pain severity in FM.


Subject(s)
Cerebral Cortex/metabolism , Electroacupuncture/methods , Fibromyalgia/therapy , Somatosensory Cortex/diagnostic imaging , gamma-Aminobutyric Acid/metabolism , Adult , Afferent Pathways , Cerebral Cortex/diagnostic imaging , Female , Fibromyalgia/diagnostic imaging , Fibromyalgia/metabolism , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Middle Aged , Neural Pathways , Pain Measurement , Proton Magnetic Resonance Spectroscopy
12.
Hum Brain Mapp ; 41(13): 3680-3695, 2020 09.
Article in English | MEDLINE | ID: mdl-32583940

ABSTRACT

Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.


Subject(s)
Aging/physiology , Connectome , Magnetic Resonance Spectroscopy , Motor Activity/physiology , Neuronal Plasticity/physiology , Sensorimotor Cortex/physiology , Serial Learning/physiology , Transcranial Direct Current Stimulation , gamma-Aminobutyric Acid/metabolism , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Psychomotor Performance/physiology , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/metabolism
13.
Psychol Med ; 50(13): 2182-2193, 2020 10.
Article in English | MEDLINE | ID: mdl-31524118

ABSTRACT

BACKGROUND: Poor response to dopaminergic antipsychotics constitutes a major challenge in the treatment of psychotic disorders and markers for non-response during first-episode are warranted. Previous studies have found increased levels of glutamate and γ-aminobutyric acid (GABA) in non-responding first-episode patients compared to responders, but it is unknown if non-responders can be identified using reference levels from healthy controls (HCs). METHODS: Thirty-nine antipsychotic-naïve patients with first-episode psychosis and 36 matched HCs underwent repeated assessments with the Positive and Negative Syndrome Scale and 3T magnetic resonance spectroscopy. Glutamate scaled to total creatine (/Cr) was measured in the anterior cingulate cortex (ACC) and left thalamus, and levels of GABA/Cr were measured in ACC. After 6 weeks, we re-examined 32 patients on aripiprazole monotherapy and 35 HCs, and after 26 weeks we re-examined 30 patients on naturalistic antipsychotic treatment and 32 HCs. The Andreasen criteria defined non-response. RESULTS: Before treatment, thalamic glutamate/Cr was higher in the whole group of patients but levels normalized after treatment. ACC levels of glutamate/Cr and GABA/Cr were lower at all assessments and unaffected by treatment. When compared with HCs, non-responders at week 6 (19 patients) and week 26 (16 patients) had higher baseline glutamate/Cr in the thalamus. Moreover, non-responders at 26 weeks had lower baseline GABA/Cr in ACC. Baseline levels in responders and HCs did not differ. CONCLUSION: Glutamatergic and GABAergic abnormalities in antipsychotic-naïve patients appear driven by non-responders to antipsychotic treatment. If replicated, normative reference levels for glutamate and GABA may aid estimation of clinical prognosis in first-episode psychosis patients.


Subject(s)
Antipsychotic Agents/therapeutic use , Glutamic Acid/drug effects , Psychotic Disorders/drug therapy , gamma-Aminobutyric Acid/drug effects , Adolescent , Adult , Case-Control Studies , Female , Glutamic Acid/analysis , Glutamic Acid/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Humans , Logistic Models , Magnetic Resonance Spectroscopy/methods , Male , Psychiatric Status Rating Scales , Thalamus/drug effects , Thalamus/metabolism , Time Factors , Young Adult , gamma-Aminobutyric Acid/analysis , gamma-Aminobutyric Acid/metabolism
14.
Sci Rep ; 9(1): 732, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679738

ABSTRACT

Human prosocial behavior (PB) emerges in childhood and matures during adolescence. Previous task-related functional magnetic resonance imaging (fMRI) studies have reported involvement of the medial prefrontal cortex including the anterior cingulate cortex (ACC) in social cognition in adolescence. However, neurometabolic and functional connectivity (FC) basis of PB in early adolescence remains unclear. Here, we measured GABA levels in the ACC and FC in a subsample (aged 10.5-13.4 years) of a large-scale population-based cohort with MR spectroscopy (MEGA-PRESS) and resting-state fMRI. PB was negatively correlated with GABA levels in the ACC (N = 221), and positively correlated with right ACC-seeded FC with the right precentral gyrus and the bilateral middle and posterior cingulate gyrus (N = 187). Furthermore, GABA concentrations and this FC were negatively correlated, and the FC mediated the association between GABA levels and PB (N = 171). Our results from a minimally biased, large-scale sample provide new insights into the neurometabolic and neurofunctional correlates of prosocial development during early adolescence.


Subject(s)
Brain/physiology , Frontal Lobe/physiology , Prefrontal Cortex/physiology , Social Behavior , Adolescent , Brain/diagnostic imaging , Brain Mapping , Child , Female , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Prefrontal Cortex/diagnostic imaging , Rest/physiology , gamma-Aminobutyric Acid/metabolism
15.
J Neurosci ; 38(36): 7844-7851, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30064995

ABSTRACT

Healthy aging is accompanied by motor inhibition deficits that involve a slower process of stopping a prepotent motor response (i.e., reactive inhibition) rather than a diminished ability to anticipate stopping (i.e., proactive inhibition). Some studies suggest that efficient motor inhibition is related to GABAergic function. Since age-related alterations in the GABA system have also been reported, motor inhibition impairments might be linked to GABAergic alterations in the cortico-subcortical network that mediates motor inhibition. Thirty young human adults (mean age, 23.2 years; age range, 18-34 years; 14 men) and 29 older human adults (mean age, 67.5 years; age range, 60-74 years; 13 men) performed a stop-signal task with varying levels of stop-signal probability. GABA+ levels were measured with magnetic resonance spectroscopy (MRS) in right inferior frontal cortex, pre-supplementary motor area (pre-SMA), left sensorimotor cortex, bilateral striatum, and occipital cortex. We found that reactive inhibition was worse in older adults compared with young adults, as indicated by longer stop-signal reaction times (SSRTs). No group differences in proactive inhibition were observed as both groups slowed down their response to a similar degree with increasing stop-signal probability. The MRS results showed that tissue-corrected GABA+ levels were on average lower in older as compared with young adults. Moreover, older adults with lower GABA+ levels in the pre-SMA were slower at stopping (i.e., had longer SSRTs). These findings suggest a role for the GABA system in reactive inhibition deficits.SIGNIFICANCE STATEMENT Inhibitory control has been shown to diminish as a consequence of aging. We investigated whether the ability to stop a prepotent motor response and the ability to prepare to stop were related to GABA levels in different regions of the network that was previously identified to mediate inhibitory control. Overall, we found lower GABA levels in older adults compared with young adults. Importantly, those older adults who were slower at stopping had less GABA in the pre-supplementary motor area, a key node of the inhibitory control network. We propose that deficits in the stop process in part depend on the integrity of the GABA system.


Subject(s)
Brain/metabolism , Executive Function/physiology , Inhibition, Psychological , gamma-Aminobutyric Acid/metabolism , Adolescent , Adult , Aged , Brain Mapping , Female , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Neuropsychological Tests , Reaction Time/physiology , Young Adult
16.
Neurobiol Aging ; 65: 168-177, 2018 05.
Article in English | MEDLINE | ID: mdl-29494863

ABSTRACT

Edited magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) have often been used to study the integrity of the GABAergic neurotransmission system in healthy aging. To investigate whether the measurement outcomes obtained with these 2 techniques are associated with each other in older human adults, gamma-aminobutyric acid (GABA) levels in the left sensorimotor cortex were assessed with edited MRS in 28 older (63-74 years) and 28 young adults (19-34 years). TMS at rest was then used to measure intracortical inhibition (short-interval intracortical inhibition/long-interval intracortical inhibition), intracortical facilitation, interhemispheric inhibition from left to right primary motor cortex (M1) and recruitment curves of left and right M1. Our observations showed that short-interval intracortical inhibition and long-interval intracortical inhibition in the left M1 were reduced in older adults, while GABA levels did not significantly differ between age groups. Furthermore, MRS-assessed GABA within left sensorimotor cortex was not correlated with TMS-assessed cortical excitability or inhibition. These observations suggest that healthy aging gives rise to altered inhibition at the postsynaptic receptor level, which does not seem to be associated with MRS-assessed GABA+ levels.


Subject(s)
Cortical Excitability/physiology , Healthy Aging/metabolism , Healthy Aging/physiology , Healthy Volunteers , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/physiology , gamma-Aminobutyric Acid/metabolism , Adult , Aged , Female , Humans , Magnetic Resonance Spectroscopy , Motor Cortex/physiology , Neural Inhibition/physiology , Rest/physiology , Synaptic Transmission , Transcranial Magnetic Stimulation , Young Adult , gamma-Aminobutyric Acid/physiology
17.
Psychiatry Res Neuroimaging ; 273: 46-53, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29329743

ABSTRACT

Tourette syndrome (TS) is characterized by presence of chronic, fluctuating motor and phonic tics. The underlying neurobiological basis for these movements is hypothesized to involve cortical-striatal-thalamo-cortical (CSTC) pathways. Two major neurotransmitters within these circuits are γ-aminobutyric acid (GABA) and glutamate. Seventy-five participants (32 with TS, 43 controls) ages 5-12 years completed 1H MRS at 7T. GABA and glutamate were measured in dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), premotor cortex (PMC), and striatum, and metabolites quantified using LCModel. Participants also completed neuropsychological assessment emphasizing inhibitory control. Scans were well tolerated by participants. Across ROIs combined, glutamate was significantly higher in the TS group, compared to controls, with no significant group differences in GABA observed. ROI analyses revealed significantly increased PMC glutamate in the TS group. Among children with TS, increased PMC glutamate was associated with improved selective motor inhibition; however, no significant associations were identified between levels of glutamate or GABA and tic severity. The dopaminergic system has long been considered to have a dominant role in TS. Accumulating evidence, however, suggests involvement of other neurotransmitter systems. Data obtained using 1H MRS at 7T supports alteration of glutamate within habitual behavior-related CSTC pathways of children with TS.


Subject(s)
Glutamic Acid/metabolism , Tourette Syndrome/metabolism , gamma-Aminobutyric Acid/metabolism , Adult , Case-Control Studies , Child , Child, Preschool , Corpus Striatum/metabolism , Female , Humans , Inhibition, Psychological , Male , Motor Cortex/metabolism , Neuropsychological Tests , Prefrontal Cortex/metabolism , Proton Magnetic Resonance Spectroscopy
18.
Neuroimage ; 162: 249-256, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28882635

ABSTRACT

Tissue composition impacts the interpretation of magnetic resonance spectroscopy metabolite quantification. The goal of applying tissue correction is to decrease the dependency of metabolite concentrations on the underlying voxel tissue composition. Tissue correction strategies have different underlying assumptions to account for different aspects of the voxel tissue fraction. The most common tissue correction is the CSF-correction that aims to account for the cerebrospinal fluid (CSF) fraction in the voxel, in which it is assumed there are no metabolites. More recently, the α-correction was introduced to account for the different concentrations of GABA+in gray matter and white matter. In this paper, we show that the selected tissue correction strategy can alter the interpretation of results using data from a healthy aging cohort with GABA+ measurements in a frontal and posterior voxel. In a frontal voxel, we show an age-related decline in GABA+ when either no tissue correction (R2 = 0.25, p < 0.001) or the CSF-correction is applied (R2 = 0.08, p < 0.01). When applying the α-correction to the frontal voxel data, we find no relationship between age and GABA+ (R2 = 0.02, p = 0.15). However, with the α-correction we still find that cognitive performance is correlated with GABA+ (R2 = 0.11, p < 0.01). These data suggest that in healthy aging, while there is normal atrophy in the frontal voxel, GABA+ in the remaining tissue is not decreasing on average. This indicates that the selection of tissue correction can significantly impact the interpretation of MRS results.


Subject(s)
Frontal Lobe/metabolism , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Spectroscopy/methods , gamma-Aminobutyric Acid/metabolism , Adult , Aged , Aged, 80 and over , Aging/metabolism , Female , Humans , Male , Middle Aged , gamma-Aminobutyric Acid/analysis
19.
Sleep Med ; 22: 75-82, 2016 06.
Article in English | MEDLINE | ID: mdl-27544840

ABSTRACT

OBJECTIVES: Altered brain iron homeostasis with regional iron deficiency has been previously reported in several studies of restless legs syndrome (RLS) patients. Inconsistencies still exist, however, in the reported iron changes in different brain regions and different RLS phenotypes. The purpose of this study was to assess differences in brain iron concentrations between RLS patients and healthy controls and their relation to severity of disease and periodic limb movement during sleep (PLMS). METHODS: Assessment of brain iron was done using quantitative magnetic susceptibility measurement, which has been shown to correlate well with the tissue iron content in brain's gray matter. Thirty-nine RLS patients and 29 age-matched healthy controls were scanned at 7 T. Magnetic susceptibilities in substantia nigra (SN), thalamus, striatum, and several iron-rich gray matter regions were quantified and compared with related clinical measures. RESULTS: Compared with healthy controls, RLS patients showed significantly decreased magnetic susceptibility in the thalamus and dentate nucleus. No significant difference was found in the SN between RLS patients and healthy controls, but a significant correlation was observed between magnetic susceptibility in SN and the PLMS measure. CONCLUSIONS: Using quantitative magnetic susceptibility as an in vivo indicator of brain iron content, the present study supports the general hypothesis of brain iron deficiency in RLS and indicates its possible link to PLMS.


Subject(s)
Iron Deficiencies , Magnetic Resonance Imaging , Restless Legs Syndrome/physiopathology , Substantia Nigra/metabolism , Female , Humans , Male , Middle Aged , Thalamus/metabolism
20.
J Child Adolesc Psychopharmacol ; 25(5): 415-24, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26091195

ABSTRACT

OBJECTIVE: We aimed to determine the effect of an open-label 8 week Vitamin D3 supplementation on manic symptoms, anterior cingulate cortex (ACC) glutamate, and γ-aminobutyric acid (GABA) in youth exhibiting symptoms of mania; that is, patients with bipolar spectrum disorders (BSD). We hypothesized that an 8 week Vitamin D3 supplementation would improve symptoms of mania, decrease ACC glutamate, and increase ACC GABA in BSD patients. Single time point metabolite levels were also evaluated in typically developing children (TD). METHODS: The BSD group included patients not only diagnosed with BD but also those exhibiting bipolar symptomology, including BD not otherwise specified (BD-NOS) and subthreshold mood ratings (Young Mania Rating Scale [YMRS] ≥8 and Clinical Global Impressions - Severity [CGI-S] ≥3). Inclusion criteria were: male or female participants, 6-17 years old. Sixteen youth with BSD exhibiting manic symptoms and 19 TD were included. BSD patients were asked to a take daily dose (2000 IU) of Vitamin D3 (for 8 weeks) as a supplement. Neuroimaging data were acquired in both groups at baseline, and also for the BSD group at the end of 8 week Vitamin D3 supplementation. RESULTS: Baseline ACC GABA/creatine (Cr) was lower in BSD than in TD (F[1,31]=8.91, p=0.007). Following an 8 week Vitamin D3 supplementation, in BSD patients, there was a significant decrease in YMRS scores (t=-3.66, p=0.002, df=15) and Children's Depression Rating Scale (CDRS) scores (t=-2.93, p=0.01, df=15); and a significant increase in ACC GABA (t=3.18, p=0.007, df=14). CONCLUSIONS: Following an 8 week open label trial with Vitamin D3, BSD patients exhibited improvement in their mood symptoms in conjunction with their brain neurochemistry.


Subject(s)
Bipolar Disorder/drug therapy , Cholecalciferol/therapeutic use , Dietary Supplements , Gyrus Cinguli/drug effects , Adolescent , Affect/drug effects , Child , Female , Glutamic Acid/metabolism , Gyrus Cinguli/metabolism , Humans , Male , Psychiatric Status Rating Scales , Treatment Outcome , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL