Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 329: 118107, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38599475

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall. (PLP), a traditional Chinese medicine, is recognized for its antioxidative and anti-apoptotic properties. Despite its potential medicinal value, the mechanisms underlying its efficacy have been less explored, particularly in alleviating acute liver injury (ALI) caused by excessive intake of acetaminophen (APAP). AIM OF THE STUDY: This study aims to elucidate the role and mechanisms of PLP in mitigating oxidative stress and apoptosis induced by APAP. MATERIALS AND METHODS: C57BL/6 male mice were pre-treated with PLP for seven consecutive days, followed by the induction of ALI using APAP. Liver pathology was assessed using HE staining. Serum indicators, immunofluorescence (IF), immunohistochemical (IHC), and transmission electron microscopy were employed to evaluate levels of oxidative stress, ferroptosis and apoptosis. Differential expression proteins (DEPs) in the APAP-treated and PLP pre-treated groups were analyzed using quantitative proteomics. Subsequently, the potential mechanisms of PLP pre-treatment in treating ALI were validated using western blotting, molecular docking, molecular dynamics simulations, and surface plasmon resonance (SPR) analysis. RESULTS: The UHPLC assay confirmed the presence of three compounds, i.e., albiflorin, paeoniflorin, and oxypaeoniflorin. Pre-treatment with PLP was observed to ameliorate liver tissue pathological damage through HE staining. Further confirmation of efficacy of PLP in alleviating APAP-induced liver injury and oxidative stress was established through liver function serum biochemical indicators, IF of reactive oxygen species (ROS) and IHC of glutathione peroxidase 4 (GPX4) detection. However, PLP did not demonstrate a significant effect in alleviating APAP-induced ferroptosis. Additionally, transmission electron microscopy and TUNEL staining indicated that PLP can mitigate hepatocyte apoptosis. PKC-ERK pathway was identified by proteomics, and subsequent molecular docking, molecular dynamics simulations, and SPR verified binding of the major components of PLP to ERK protein. Western blotting demonstrated that PLP suppressed protein kinase C (PKC) phosphorylation, blocking extracellular signal-regulated kinase (ERK) phosphorylation and inhibiting oxidative stress and cell apoptosis. CONCLUSION: This study demonstrates that PLP possesses hepatoprotective abilities against APAP-induced ALI, primarily by inhibiting the PKC-ERK cascade to suppress oxidative stress and cell apoptosis.


Subject(s)
Acetaminophen , Apoptosis , Chemical and Drug Induced Liver Injury , Mice, Inbred C57BL , Oxidative Stress , Paeonia , Animals , Acetaminophen/toxicity , Paeonia/chemistry , Oxidative Stress/drug effects , Male , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Mice , MAP Kinase Signaling System/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , Antioxidants/pharmacology
2.
Phytomedicine ; 129: 155573, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583348

ABSTRACT

BACKGROUND: Cholestatic hepatitis is recognized as a significant contributor to the development of liver fibrosis and cirrhosis. As a well-known classic formula for the treatment of cholestatic hepatitis, Yinchenhao decoction (YCHD) is widely used in countries in Asia, including China, Japan, and Korea. However, in recent years, a risk of liver injury has been reported from Rheum palmatum L. and Gardenia jasmonoides J.Ellis which are the main ingredients of YCHD. Therefore, the question arises whether YCHD is still safe enough for the treatment of cholestatic hepatitis or whether an optimized ratio of ingredients should be applied. These is inevitable questions for the clinical application of YCHD. PURPOSE: To provide a scientific basis for the clinical application of YCHD through a combination of meta-analysis and network pharmacology and to find the best ratio of components to ensure optimal therapeutic efficacy and safety. At the same time, a deeper understanding of the mechanisms of YCHD was explored. METHODS: We retrieved relevant trials from various databases including PubMed, Web of Science, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP and Wanfang databases up to August 2023. After screening for inclusion and exclusion criteria, we assessed efficiency, ALT, AST, and TBIL as outcome parameters. The relevant data underwent a network meta-analysis using STATA 16.0 software. Based on network pharmacology, we screened the disease targets, active ingredients, and targets related to YCHD. The targets were visualized using Cytoscape 3.9.1. Then, potential mechanisms were explored based on bioinformatic techniques. RESULTS: Twenty eligible studies were finally screened and a total of 1,591 patients who fulfilled the inclusion criteria were enrolled in the study. The meta-analysis results indicated that TG-c (treatment group c) [(Artemisia capillaris Thunb. : Gardenia jasminoides J.Ellis : Rheum palmatum L. = 10:5:2-10:5:3) + CT] was the most promising therapeutic approach, demonstrating superior efficacy and notable improvements in both AST and TBIL levels. For ALT, TG-d [(Artemisia capillaris : Gardenia jasminoides : Rheum palmatum = 5:1:1-5:2:1) + CT] exhibited the greatest potential as optimal therapy option. Based on the surface under the cumulative ranking curve (SUCRA) values, TG-c was the best therapy in terms of efficiency and improvement in TBIL levels, while TG-d was the most effective in reducing ALT levels. For AST levels, TG-e [(Artemisia capillaris : Gardenia jasminoides : Rheum palmatum = 5:2:2-5:3:3) + CT] was the most effective therapy. The comprehensive analysis revealed that TG-c exhibited the most pronounced efficacy. Combined network pharmacology, GO enrichment analysis and KEGG pathway enrichment analysis displayed that the key target genes of Artemisia capillaris, Rheum palmatum, and Gardenia jasminoides were closely involved in inflammation response, bile transport, apoptosis, oxidative stress, and regulation of leukocyte migration. Notably, bile secretion dominated the common pathway of the three herbs. On the other hand, Artemisia capillaris exhibited a unique mode of action by regulating the IL-17 signaling pathway, which may play a crucial role in its effectiveness. CONCLUSION: Based on our findings, the optimal TG-C demonstrated the most favorable overall therapeutic efficacy by increasing the dosage of Artemisia capillaris while reducing the dosage of Gardenia jasminoides and Rheum palmatum. This is attributed to the potent ability of Artemisia capillaris. to effectively modulate the IL-17 signaling pathway, thereby exerting a beneficial therapeutic effect. Conversely, Gardenia jasminoides and Rheum palmatum may potentially enhance the activation of the NF-кB signaling pathway, thereby elevating the risk of hepatotoxicity.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Network Meta-Analysis , Cholestasis/drug therapy , Rheum/chemistry , Hepatitis/drug therapy
3.
Phytomedicine ; 128: 155432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518645

ABSTRACT

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Subject(s)
Antineoplastic Agents, Phytogenic , Saponins , Steroids , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Humans , Steroids/pharmacology , Steroids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Neoplasms/drug therapy , Animals , Apoptosis/drug effects
4.
Phytomedicine ; 128: 155361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552434

ABSTRACT

BACKGROUND: As a traditional Chinese herbal medicine, Schisandra chinensis exhibits various effects such as liver protection, blood sugar regulation, blood lipid regulation, immune function regulation, antidepressant activity, etc. However, because of its intricate composition, diverse origins, and medicinal effects depending on complex compound groups, there are differences in the lignan composition of S. chinensis from different origins. Therefore, it is currently difficult to evaluate the quality of medicinal materials from plants of different origins using a single qualitative quality control index. PURPOSE: This paper aims to investigate the potential relationship between the lignan components of S. chinensis from different origins and to establish stable assessment indices for determining the lignan content of S. chinensis from multiple perspectives. METHODS: In this study, we collected S. chinensis samples of seven major origins in China, and randomly sampled 6-9 batches of each origin for a total of 60 batches. The lignan content was determined by HPLC, and its distribution law of the ratio of each lignan component of S. chinensis to Schisandrol A content was analyzed. Combining network pharmacology and differential analysis between samples, the stable and effective substances used as quality markers were determined. RESULTS: There were some correlations among the lignan contents of S. chinensis, some correlations between schisandrin A and other lignans of S. chinensis could be determined. The ratio of each component to the indicator component schisandrol A was evenly distributed and reflected the lignan content of S. chinensis to some extent. Four substances (schisandrol A, schisandrol B, schisantherin A, and schisandrin C) were determined by network pharmacology combined with the analysis results of HCA, PCA and PLS-DA to further optimize the model. They displayed a strong connection with the core target, a large contribution rate to the principal components, and a stable content in each batch of samples, suggesting that these components may be the main active substances of S. chinensis lignans. Therefore, they could be used as main indicators evaluating the advantages and disadvantages of S. chinensis by examining the consistency of component proportions. CONCLUSION: This method can intuitively evaluate the content of main lignans in S. chinensis. This quality assessment model is an exploration of the multi-component comprehensive evaluation system of S. chinensis, providing a new concept for the quality evaluation system of Chinese herbal medicines.


Subject(s)
Cyclooctanes , Drugs, Chinese Herbal , Lignans , Schisandra , Schisandra/chemistry , Lignans/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Chromatography, High Pressure Liquid/methods , Cyclooctanes/analysis , China , Polycyclic Compounds/analysis , Dioxoles/analysis , Quality Control , Principal Component Analysis
5.
Food Funct ; 15(8): 4354-4364, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38533683

ABSTRACT

Alzheimer's Disease (AD) is a fatal age-related neurodegenerative condition with a multifactorial etiology contributing to 70% of dementia globally. The search for a multi-target agent to hit different targets involved in the pathogenesis of AD is crucial. In the present study, the neuroprotective effects of four Morus extracts were assessed in LPS-induced AD in mice. Among the studied species, M. macroura exhibited a profound effect on alleviating the loss of cognitive function, improved the learning ability, restored the acetylcholine esterase (AChE) levels to normal, and significantly reduced the tumor necrosis factor alpha (TNF-α) brain content in LPS-treated mice. To investigate the secondary metabolome of the studied Morus species, ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-HRMS/MS), aided with feature-based molecular networking, was employed. Among the annotated features, aryl benzofurans and prenylated flavonoids were suggested as being responsible for the observed neuroprotective effect. Furthermore, some of the detected metabolites were proposed as new natural products such as moranoline di-O-hexoside (1), isomers of trimethoxy-dihydrochalcone-O-dihexoside (59 & 76), (hydroxy-dimethoxyphenyl)butenone-O-hexoside (82), and O-methylpreglabridin-O-sulphate (105). In conclusion, our findings advocate the potential usage of M. macroura leaves for the management of AD, yet after considering further clinical trials.


Subject(s)
Alzheimer Disease , Metabolome , Morus , Neuroprotective Agents , Plant Extracts , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neuroprotective Agents/pharmacology , Mice , Plant Extracts/pharmacology , Male , Morus/chemistry , Metabolome/drug effects , Tandem Mass Spectrometry , Disease Models, Animal , Chromatography, High Pressure Liquid , Humans , Brain/metabolism , Brain/drug effects
6.
Phytomedicine ; 126: 155267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368795

ABSTRACT

BACKGROUND: Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE: Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS: Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS: Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION: Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.


Subject(s)
Antineoplastic Agents , Isoquinolines , Leukemia , Animals , Humans , NF-kappa B/metabolism , Zebrafish/metabolism , Apoptosis , Molecular Docking Simulation , Angiogenesis , G2 Phase Cell Cycle Checkpoints , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints , Autophagy
7.
Pharmaceuticals (Basel) ; 17(1)2024 01 08.
Article in English | MEDLINE | ID: mdl-38256913

ABSTRACT

Pyrrolizidine alkaloids (PAs) are one of the largest distributed classes of toxins in nature. They have a wide range of toxicity, such as hepatotoxicity, pulmonary toxicity, neuronal toxicity, and carcinogenesis. Yet, biological targets responsible for these effects are not well addressed. Using methods of computational biology for target identification, we tested more than 200 PAs. We used a machine-learning approach that applies structural similarity for target identification, ChemMapper, and SwissTargetPrediction. The predicted target with high probability was muscarinic acetylcholine receptor M1. The predicted interactions between this target and PAs were further studied by molecular docking-based binding energies using AutoDock and VinaLC, which revealed good binding affinities. The PAs are bound to the same binding pocket as pirenzepine, a known M1 antagonist. These results were confirmed by in vitro assays showing that PAs increased the levels of intracellular calcium. We conclude that PAs are potential acetylcholine receptor M1 antagonists. This elucidates for the first time the serious neuro-oncological toxicities exerted by PA consumption.

8.
Phytomedicine ; 123: 155157, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951147

ABSTRACT

BACKGROUND: Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM: The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS: We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION: In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.


Subject(s)
Bacopa , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Mice , Humans , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy , Bacopa/metabolism , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Arecoline/pharmacology , Mouth Neoplasms/drug therapy , Mice, Inbred C57BL , Apoptosis , Reactive Oxygen Species/metabolism
9.
Phytomedicine ; 123: 155274, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142662

ABSTRACT

BACKGROUND: Artesunate, a derivative of the active ingredient artemisinin from Artemisia annua L. used for centuries in the traditional Chinese medicine, is being applied as front-line drug in malaria treatment. As it is cytotoxic for cancer cells, trials are ongoing to include this drug as supplement in cancer therapy. In glioblastoma cells, artesunate was shown to induce oxidative stress, DNA base damage and double-strand breaks (DSBs), apoptosis, and necroptosis. It also inhibits DNA repair functions and bears senolytic activity. Compared to ionizing radiation, DNA damages accumulate over the whole exposure period, which makes the agent unique in its genotoxic profile. Artesunate has been used in adjuvant therapy of various cancers. PURPOSE: As artesunate has been used in adjuvant therapy of different types of cancer and clinical trials are lacking in brain cancer, we investigated its activity in glioma patients with focus on possible side effects. STUDY DESIGN: Between 2014 and 2020, twelve patients were treated with artesunate for relapsing glioma and analyzed retrospectively: 8 males and 4 females, median age 45 years. HISTOLOGY: 4 glioblastomas WHO grade 4, 5 astrocytomas WHO grade 3, 3 oligodendrogliomas grade 2 or 3. All patients were pretreated with radiation and temozolomide-based chemotherapy. Artesunate 100 mg was applied twice daily p.o. combined with dose-dense temozolomide alone (100 mg/m2 day 1-5/7, 10 patients) or with temozolomide (50 mg/m2 day 1-5/7) plus lomustine (CCNU, 40 mg day 6/7). Blood count, C-reactive protein (CRP), liver enzymes, and renal parameters were monitored weekly. RESULTS: Apart from one transient grade 3 hematological toxicity, artesunate was well tolerated. No liver toxicity was observed. While 8 patients with late stage of the disease had a median survival of 5 months after initiation of artesunate treatment, 4 patients with treatment for remission maintenance showed a median survival of 46 months. We also review clinical trials that have been performed in other cancers where artesunate was included in the treatment regimen. CONCLUSIONS: Artesunate administered at a dose of 2 × 100 mg/day was without harmful side effects, even if combined with alkylating agents used in glioma therapy. Thus, the phytochemical, which is also utilized as food supplement, is an interesting, well tolerated supportive agent useful for long-term maintenance treatment. Being itself cytotoxic on glioblastoma cells and enhancing the cytotoxicity of temozolomide as well as in view of its senolytic activity, artesunate has clearly a potential to enhance the efficacy of malignant brain cancer therapy.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Male , Female , Humans , Middle Aged , Glioblastoma/drug therapy , Temozolomide/pharmacology , Artesunate/pharmacology , Artesunate/therapeutic use , Dacarbazine , Retrospective Studies , Senotherapeutics , Neoplasm Recurrence, Local , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , DNA/therapeutic use
10.
BMC Complement Med Ther ; 23(1): 341, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37752510

ABSTRACT

BACKGROUND: Bauhinia thonningii is a plant traditionally used against many human diseases such as gastric ulcers, fever, inflammations, coughs, dysentery, diarrhea, and malaria. In the present investigation, the cytotoxicity of methanol extract of Bauhinia thonningii leaves (BTL), fractions and the isolated phytoconstituents was determined in a panel of 9 human cancer cell lines including drug sensitive and multidrug-resistant (MDR) phenotypes. The acute and sub-chronic oral toxicity of BTL was investigated as well. METHODS: Compounds were isolated using chromatographic techniques while their chemical structures were determined using spectroscopic methods. The resazurin reduction assay (RRA) was used to evaluate the cytotoxicity of samples, propidium iodide (PI) for apoptosis, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining for mitochondrial membrane potential (MMP) analysis, 2´,7´-dichlorodihydrofluoresceine diacetate (H2DCFH-DA) staining for the quantification of reactive oxygen species (ROS), whereas Caspase Glo assays were combined by means of flow cytometry. Furthermore, the toxicological investigations were performed as recommended by the Organization for Economic Cooperation and Development (OECD). RESULTS: The botanicals as well as 6-C-methylquercetin-3,7-dimethyl ether (2), quercetin-3-O-L-rhamnopyranoside (5), quercetin-3-O-ß-glucopyranoside (6), 6,8-C-dimethylkaempferol 3,7-dimethyl ether (7), and 6,8-C-dimethylkaempferol-3-methyl ether (8) had promising cytotoxic effects in the 9 tested cancer cell lines. The IC50 values below 20 µg/mL (botanicals) or 10 µM (compounds) on at least 1/9 tested cancer cell lines were considered. The best cytotoxic effects with IC50 values below 5 µM were achieved with compounds 7 against CEM/ADR5000 leukemia cells (2.86 µM) and MDA-MB-231-pcDNA breast adenocarcinoma cells (1.93 µM) as well as 8 against CCRF-CEM leukemia cells (3.03 µM), CEM/ADR5000 cells (2.42 µM), MDA-MB-231-pcDNA (2.34 µM), and HCT116 p53-/- cells (3.41 µM). BTL and compound 8 induced apoptotic cell death in CCRF-CEM cells through caspase activation, alteration of MMP, and increased ROS production. BTL did not cause any adverse effects in rats after a single administration at 5000 mg/kg or a repeated dose of 250 mg/kg body weight (b. w.). CONCLUSION: Bauhinia thonningii and its constituents are sources of cytotoxic drugs that deserve more in-depth studies to develop novel antiproliferative phytomedicine to fight cancer including resistant phenotypes.


Subject(s)
Bauhinia , Fabaceae , Leukemia , Humans , Animals , Rats , Quercetin , Reactive Oxygen Species , Caspases
11.
Molecules ; 28(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570631

ABSTRACT

The c-MYC oncogene regulates multiple cellular activities and is a potent driver of many highly aggressive human cancers, such as leukemia and triple-negative breast cancer. The oxadiazole class of compounds has gained increasing interest for its anticancer activities. The aim of this study was to investigate the molecular modes of action of a 1,2,4-oxadiazole derivative (ZINC15675948) as a c-MYC inhibitor. ZINC15675948 displayed profound cytotoxicity at the nanomolar range in CCRF-CEM leukemia and MDA-MB-231-pcDNA3 breast cancer cells. Multidrug-resistant sublines thereof (i.e., CEM/ADR5000 and MDA-MB-231-BCRP) were moderately cross-resistant to this compound (<10-fold). Molecular docking and microscale thermophoresis revealed a strong binding of ZINC15675948 to c-MYC by interacting close to the c-MYC/MAX interface. A c-MYC reporter assay demonstrated that ZINC15675948 inhibited c-MYC activity. Western blotting and qRT-PCR showed that c-MYC expression was downregulated by ZINC15675948. Applying microarray hybridization and signaling pathway analyses, ZINC15675948 affected signaling routes downstream of c-MYC in both leukemia and breast cancer cells as demonstrated by the induction of DNA damage using single cell gel electrophoresis (alkaline comet assay) and induction of apoptosis using flow cytometry. ZINC15675948 also caused G2/M phase and S phase arrest in CCRF-CEM cells and MDA-MB-231-pcDNA3 cells, respectively, accompanied by the downregulation of CDK1 and p-CDK2 expression using western blotting. Autophagy induction was observed in CCRF-CEM cells but not MDA-MB-231-pcDNA3 cells. Furthermore, microarray-based mRNA expression profiling indicated that ZINC15675948 may target c-MYC-regulated ubiquitination, since the novel ubiquitin ligase (ELL2) was upregulated in the absence of c-MYC expression. We propose that ZINC15675948 is a promising natural product-derived compound targeting c-MYC in c-MYC-driven cancers through DNA damage, cell cycle arrest, and apoptosis.


Subject(s)
Antineoplastic Agents, Phytogenic , Breast Neoplasms , Leukemia , Humans , Female , Plant Extracts/chemistry , Cell Line, Tumor , Breast Neoplasms/drug therapy , Molecular Docking Simulation , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Neoplasm , Neoplasm Proteins , Apoptosis , Leukemia/drug therapy , Transcriptional Elongation Factors
12.
RSC Adv ; 13(29): 19710-19720, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37396835

ABSTRACT

Isodon ternifolius (D.Don) Kudô is an important Asian herb used in traditional medicine against several diseases. Nineteen compounds were isolated from the dichloromethane-methanol (1 : 1) extract of I. ternifolius roots, including ten new α-pyrone derivatives, named ternifolipyrons A-J. The chemical structures of the isolates were determined by a combination of 1D and 2D NMR, along with LR- and HRMS spectroscopy. The absolute configurations of the α-pyrone derivatives were constructed based upon the X-ray signal crystal of the bromobenzoyl derivative of 1 as well as the electronic circular dichroism (ECD). All isolates (1-19) were investigated for their growth-inhibitory potential towards CCRF-CEM-leukemia cells at a fixed concentration of 30 µM. The compounds which exerted more than 50% inhibition at this concentration, compounds (7, 10, 12, 15-17), were tested at a different concentration range to determine their IC50 values in CCRF-CEM leukemia, MDA-MB-231 triple-negative breast cancer, and MCF7 breast cancer cell lines. Ursolic acid (16) showed the most potent activity against the three cancer cell lines with IC50 values of 8.37, 18.04, and 18.93 µM, respectively.

13.
Phytomedicine ; 116: 154850, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37187036

ABSTRACT

BACKGROUND: Lung cancer is one of the leading causes of malignancy in the world. Several therapeutical and chemopreventive approaches have been practised to mitigate the disease. The use of phytopigments including carotenoids is a well-known approach. However, some of the prominent clinical trials interrogated the efficacy of carotenoids in lung cancer prevention. METHODS: A elaborate literature survey have been performed investigating in vitro, in vivo, and clinical studies reported on the administration of carotenoids for chemoprevention and chemotherapy. RESULTS: Tobacco consumption, genetic factors, dietary patterns, occupational carcinogens, lung diseases, infection, and sex disparities are some of the prominent factors leading to lung cancer. Significant evidence has been found underlining the efficiency of carotenoids in alleviating cancer. In vitro studies have proven that carotenoids act through PI3K/ AKT/mTOR, ERK-MAPK pathways and induce apoptosis through PPAR, IFNs, RAR, which are p53 intermediators in lung cancer signaling. Animal models and cell lines studies showed promising results, while the outcomes of clinical trials are contradictory and require further verification. CONCLUSION: The carotenoids exert chemotherapeutic and chemopreventive effects on lung tumors which has been evidenced in numerous investigations. However, further analyses are necessary to the answer the uncertainties raised by several clinical trials.


Subject(s)
Anticarcinogenic Agents , Lung Neoplasms , Animals , Carotenoids/pharmacology , Carotenoids/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/prevention & control , Chemoprevention/methods , Anticarcinogenic Agents/pharmacology , Antioxidants/pharmacology
14.
Phytomedicine ; 114: 154803, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058946

ABSTRACT

BACKGROUND: The resistance of Gram-negative bacteria to polymyxin B, caused by the plasmid-mediated colistin resistance gene mcr-1, which encodes a phosphoethanolamine transferase (MCR-1), is a serious threat to global public health. Therefore, it is urgent to find new drugs that can effectively alleviate polymyxin B resistance. Through the screening of 78 natural compounds, we found that cajanin stilbene acid (CSA) can significantly restore the susceptibility of polymyxin B to mcr-1 positive Escherichia coli (E. coli). PURPOSE: In this study, we tried to evaluate the ability of CSA to restore the susceptibility of polymyxin B towards the E. coli, and explore the mechanism of sensitivity recovery. STUDY DESIGN AND METHODS: Checkerboard MICs, time-killing curves, scanning electron microscope, lethal and semi-lethal models of infection in mice were used to assess the ability of CSA to restore the susceptibility of polymyxyn to E. coli. The interaction between CSA and MCR-1 was evaluated using surface plasmon resonance (SPR), and molecular docking experiments. RESULTS: Here, we find that CSA, a potential direct inhibitor of MCR-1, effectively restores the sensitivity of E. coli to polymyxin B. CSA can restore the sensitivity of polymyxin B to drug-resistant E. coli, and the MIC value can be reduced to 1 µg/ml. The time killing curve and scanning electron microscopy results also showed that CSA can effectively restore polymyxin B sensitivity. In vivo experiments showed that the simultaneous use of CSA and polymyxin B can effectively reduce the infection of drug-resistant E. coli in mice. SPR and molecular docking experiments confirmed that CSA strongly bound to MCR-1. The 17-carbonyl oxygen and 12- and 18­hydroxyl oxygens of CSA were the key sites binding to MCR-1. CONCLUSION: CSA is able to significantly restore the sensitivity of polymyxin B to E. coli in vivo and in vitro. CSA inhibits the enzymatic activity of the MCR-1 protein by binding to key amino acids at the active center of the MCR-1 protein.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Mice , Colistin/pharmacology , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , Molecular Docking Simulation , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/pharmacology , Plasmids
15.
Pharmacol Res ; 191: 106769, 2023 05.
Article in English | MEDLINE | ID: mdl-37061145

ABSTRACT

Drug resistance in cancer has been classified as innate resistance or acquired resistance, which were characterized by apoptotic defects and ABC transporters overexpression respectively. Therefore, to preclude or reverse these resistance mechanisms could be a promising strategy to improve chemotherapeutic outcomes. In this study, a natural product from Osage Orange, pomiferin, was identified as a novel autophagy activator that circumvents innate resistance by triggering autophagic cell death via SERCA inhibition and activation of the CaMKKß-AMPK-mTOR signaling cascade. In addition, pomiferin also directly inhibited the P-gp (MDR1/ABCB1) efflux and reversed acquired resistance by potentiating the accumulation and efficacy of the chemotherapeutic agent, cisplatin. In vivo study demonstrated that pomiferin triggered calcium-mediated tumor suppression and exhibited an anti-metastatic effect in the LLC-1 lung cancer-bearing mouse model. Moreover, as an adjuvant, pomiferin potentiated the anti-tumor effect of the chemotherapeutic agent, cisplatin, in RM-1 drug-resistant prostate cancer-bearing mouse model by specially attenuating ABCB1-mediated drug efflux, but not ABCC5, thereby promoting the accumulation of cisplatin in tumors. Collectively, pomiferin may serve as a novel effective agent for circumventing drug resistance in clinical applications.


Subject(s)
Antineoplastic Agents , Autophagic Cell Death , Lung Neoplasms , Male , Mice , Animals , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor
16.
J Ethnopharmacol ; 313: 116479, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37062529

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The plant, Ficus religiosa (L.) from the family Moraceae, has been extensively used in Ayurveda and Unani. Traditionally this plant is known for the treatment of constipation, liver diseases and neurological disorders that are related to hypothyroidism. AIM OF THE STUDY: This study was primarily designed to evaluate the effect of Ficus religiosa leaf (FL) extract in ameliorating hypothyroidism in rats and to identify the major bioactive compounds in the test extract that might be responsible for the thyroid-altering activity. In addition, the probable mechanism underlying the thyroid regulation of the main FL constituents were analyzed by molecular docking. MATERIALS AND METHODS: Adult female Wistar rats were used. LC-ESI-MS/MS was performed to identify the compounds present in the extract. HPLC analysis of FL extract was also performed. A pilot study was made using 3 doses of FL extract. Out of 50, 100, and 200 mg/kg, 100 mg/kg appeared to be the most effective one as it could increase thyroid hormones and decreased TSH levels. In the final experiment, propyl-thiouracil (PTU)-induced hypothyroid rats were orally treated with FL extract (100 mg/kg) or L-thyroxine (100 µg/kg, i.p.) daily for 28 consecutive days. On 29th day, all rats were sacrificed and the serum levels of triiodothyronine (T3), thyroxine (T4), thyrotropin (TSH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and hepatic 5' deiodinase-1(5'D1) were estimated by ELISA. Liver marker enzymes (alanine aminotransferase, ALT and aspartate aminotransferase, AST); total cholesterol (TC) and triglycerides (TG); hepatic lipid peroxidation (LPO) and the activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH) content were estimated in liver tissues. RESULTS: LC-MS-MS analyses of the leaf extract identified 11 compounds including the three major compounds, betulinic acid (BA), chlorogenic acid (CGA), and quinic acid (QA). While the PTU treatment decreased the levels of thyroid hormones and 5'D1 activity, it increased the TSH, ALT, AST, TNF-α, IL-6, TC, and TG levels. Furthermore, hepatic LPO significantly increased with a decrease in reduced GSH, SOD, CAT, and GPx. However, FL treatment in PTU-induced animals nearly reversed these adverse effects and improved liver function by decreasing ALT, AST, hepatic LPO and increasing the levels of antioxidants. FL not only improved the liver histology, but also suppressed the inflammatory cytokines, TNF-α and IL-6 in PTU-induced animals. A molecular docking study towards the understanding of the thyroid stimulatory mechanism of action revealed that BA, CGA, and QA might have augmented thyroid hormones by interacting with the thyroid hormone receptor (TRß1) and TSH receptor (TSHR). CONCLUSION: For the first time, we report the pro-thyroidal potential of Ficus religiosa leaf extract. We postulate that its main bioactive compounds, BA, CGA, and QA involved in this action may serve as novel thyroid agonists in ameliorating hypothyroidism.


Subject(s)
Ficus , Hypothyroidism , Rats , Animals , Rats, Wistar , Polyphenols/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Tandem Mass Spectrometry , Interleukin-6 , Molecular Docking Simulation , Pilot Projects , Hypothyroidism/chemically induced , Hypothyroidism/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Thyroid Hormones , Thyroxine , Liver , Thyrotropin/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Propylthiouracil/toxicity , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Superoxide Dismutase
17.
Comput Biol Med ; 157: 106781, 2023 05.
Article in English | MEDLINE | ID: mdl-36931205

ABSTRACT

RNA-sequencing has been proposed as a valuable technique to develop individualized therapy concepts for cancer patients based on their tumor-specific mutational profiles. Here, we aimed to identify drugs and inhibitors in an individualized therapy-based drug repurposing approach focusing on missense mutations for 35 biopsies of cancer patients. The missense mutations belonged to 9 categories (ABC transporter, apoptosis, angiogenesis, cell cycle, DNA damage, kinase, protease, transcription factor, tumor suppressor). The highest percentages of missense mutations were observed in transcription factor genes. The mutational profiles of all 35 tumors were subjected to hierarchical heatmap clustering. All 7 leukemia biopsies clustered together and were separated from solid tumors. Based on these individual mutation profiles, two strategies for the identification of possible drug candidates were applied: Firstly, virtual screening of FDA-approved drugs based on the protein structures carrying particular missense mutations. Secondly, we mined the Drug Gene Interaction (DGI) database (https://www.dgidb.org/) to identify approved or experimental inhibitors for missense mutated proteins in our dataset of 35 tumors. In conclusion, our approach based on virtual drug screening of FDA-approved drugs and DGI-based inhibitor selection may provide new, individual treatment options for patients with otherwise refractory tumors that do not respond anymore to standard chemotherapy.


Subject(s)
Neoplasms , Transcriptome , Humans , Drug Evaluation, Preclinical , Drug Repositioning , Early Detection of Cancer , Neoplasms/drug therapy , Neoplasms/genetics , Transcription Factors/genetics
18.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838857

ABSTRACT

Cancer drug resistance remains a major obstacle in clinical oncology. As most anticancer drugs are of natural origin, we investigated the anticancer potential of a standardized cold-water leaf extract from Nerium oleander L., termed Breastin. The phytochemical characterization by nuclear magnetic resonance spectroscopy (NMR) and low- and high-resolution mass spectrometry revealed several monoglycosidic cardenolides as major constituents (adynerin, neritaloside, odoroside A, odoroside H, oleandrin, and vanderoside). Breastin inhibited the growth of 14 cell lines from hematopoietic tumors and 5 of 6 carcinomas. Remarkably, the cellular responsiveness of odoroside H and neritaloside was not correlated with all other classical drug resistance mechanisms, i.e., ATP-binding cassette transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS), tumor suppressors (TP53, WT1), and others (GSTP1, HSP90, proliferation rate), in 59 tumor cell lines of the National Cancer Institute (NCI, USA), indicating that Breastin may indeed bypass drug resistance. COMPARE analyses with 153 anticancer agents in 74 tumor cell lines of the Oncotest panel revealed frequent correlations of Breastin with mitosis-inhibiting drugs. Using tubulin-GFP-transfected U2OS cells and confocal microscopy, it was found that the microtubule-disturbing effect of Breastin was comparable to that of the tubulin-depolymerizing drug paclitaxel. This result was verified by a tubulin polymerization assay in vitro and molecular docking in silico. Proteome profiling of 3171 proteins in the NCI panel revealed protein subsets whose expression significantly correlated with cellular responsiveness to odoroside H and neritaloside, indicating that protein expression profiles can be identified to predict the sensitivity or resistance of tumor cells to Breastin constituents. Breastin moderately inhibited breast cancer xenograft tumors in vivo. Remarkably, in contrast to what was observed with paclitaxel monotherapy, the combination of paclitaxel and Breastin prevented tumor relapse, indicating Breastin's potential for drug combination regimens.


Subject(s)
Antineoplastic Agents , Neoplasms , Nerium , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Molecular Docking Simulation , Nerium/chemistry , Paclitaxel , Plant Extracts/chemistry , Tubulin , Animals
19.
BMC Complement Med Ther ; 23(1): 48, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36793009

ABSTRACT

BACKGROUND: Cancer remains a global health concern and constitutes an important barrier to increasing life expectancy. Malignant cells rapidly develop drug resistance leading to many clinical therapeutic failures. The importance of medicinal plants as an alternative to classical drug discovery to fight cancer is well known. Brucea antidysenterica is an African medicinal plant traditionally used to treat cancer, dysentery, malaria, diarrhea, stomach aches, helminthic infections, fever, and asthma. The present work was designed to identify the cytotoxic constituents of Brucea antidysenterica on a broad range of cancer cell lines and to demonstrate the mode of induction of apoptosis of the most active samples. METHODS: Seven phytochemicals were isolated from the leaves (BAL) and stem (BAS) extract of Brucea antidysenterica by column chromatography and structurally elucidated using spectroscopic techniques. The antiproliferative effects of the crude extracts and compounds against 9 human cancer cell lines were evaluated by the resazurin reduction assay (RRA). The activity in cell lines was assessed by the Caspase-Glo assay. The cell cycle distribution, apoptosis via propidium iodide (PI) staining, mitochondrial membrane potential (MMP) through 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining, and the reactive oxygen species (ROS) via 2´,7´-dichlorodihydrofluoresceine diacetate (H2DCFH-DA) staining, were investigated by flow cytometry. RESULTS: Phytochemical studies of the botanicals (BAL and BAS) led to the isolation of seven compounds. BAL and its constituents 3, (3-(3-Methyl-1-oxo-2-butenyl))1H indole (1) and hydnocarpin (2), as well as the reference compound, doxorubicin, had antiproliferative activity against 9 cancer cell lines. The IC50 values varied from 17.42 µg/mL (against CCRF-CEM leukemia cells) to 38.70 µg/mL (against HCT116 p53-/- colon adenocarcinoma cells) for BAL, from 19.11 µM (against CCRF-CEM cells) to 47.50 µM (against MDA-MB-231-BCRP adenocarcinoma cells) for compound 1, and from 4.07 µM (against MDA-MB-231-pcDNA cells) to 11.44 µM (against HCT116 p53+/+ cells) for compound 2. Interestingly, hypersensitivity of resistant cancer cells to compound 2 was also observed. BAL and hydnocarpin induced apoptosis in CCRF-CEM cells mediated by caspase activation, the alteration of MMP, and increased ROS levels. CONCLUSION: BAL and its constituents, mostly compound 2, are potential antiproliferative products from Brucea antidysenterica. Other studies will be necessary in the perspective of the discovery of new antiproliferative agents to fight against resistance to anticancer drugs.


Subject(s)
Adenocarcinoma , Antineoplastic Agents, Phytogenic , Brucea , Colonic Neoplasms , Simaroubaceae , Humans , Plant Extracts/chemistry , Methanol , Adenocarcinoma/drug therapy , Reactive Oxygen Species/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Tumor Suppressor Protein p53 , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/chemistry , Drug Resistance, Neoplasm , Colonic Neoplasms/drug therapy , Neoplasm Proteins/metabolism , Neoplasm Proteins/pharmacology , Caspases/metabolism
20.
Phytomedicine ; 112: 154695, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36774844

ABSTRACT

BACKGROUND: Shi chang pu (Acorus tatarinowii Schott) is a herbal used in the treatment of Alzheimer's disease (AD) in China. The essential oil of Shi chang pu (SCP-oil) is the main active component. However, its effects on the neuroinflammation of AD have not been well studied. PURPOSE: Neuroinflammation mediated by the NLRP3 inflammasome plays a crucial role in AD. This study was designed to evaluate the effect of SCP-oil on cognitive impairment of AppSwe/PSEN1M146V/MAPTP301L triple transgenic (3 × Tg-AD) mice model and investigate the mechanism underlying its anti-inflammation effects. METHODS: Thirty-two 3 × Tg-AD mice at 12 months and 8 wild-type B6 mice were used for this experiment. The 3 × Tg-AD mice were administered with SCP-oil or donepezil hydrochloride for 8 weeks. Morris water maze test and step-down test were used to evaluate the cognitive ability of mice. The pathological changes, neuroinflammation, and the NLRP3 inflammasome related-protein of AD mice were detected by histomorphological examination, TUNEL staining, immunofluorescence, immunohistochemistry, qRT-PCR, Elisa, and western blot assays. RESULTS: SCP-oil treatment attenuated cognitive dysfunction of 3 × Tg-AD mice. Moreover, SCP-oil also ameliorated characteristics pathological of AD, such as pathological changes damage, deposition of Aß, phosphorylation of Tau, and neuronal loss. Additionally, SCP-oil treatment alleviated the neuroinflammation and inhibited phosphorylation of IKKß, NF-κB, and NLRP3 inflammasome related-protein NLRP3, ASC, Caspase-1, cleaved-Caspase-1, and GSDMD-N in the hippocampus of 3 × Tg-AD mice. CONCLUSION: Overall, SCP-oil contributed to neuroprotection in 3 × Tg-AD mice by reduced activation of NLRP3 inflammasome by inhibiting the NF-κB signaling pathway.


Subject(s)
Acorus , Alzheimer Disease , Oils, Volatile , Mice , Animals , Inflammasomes/metabolism , Alzheimer Disease/metabolism , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Neuroinflammatory Diseases , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Caspase 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL