Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Genet Med ; 25(6): 100314, 2023 06.
Article in English | MEDLINE | ID: mdl-36305855

ABSTRACT

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Subject(s)
Liver Failure, Acute , Liver Failure , Adolescent , Child , Child, Preschool , Humans , Infant , Young Adult , Acetylcysteine/therapeutic use , Liver Failure/drug therapy , Liver Failure/genetics , Liver Failure, Acute/drug therapy , Liver Failure, Acute/genetics , Mitochondrial Proteins/genetics , Mutation , Retrospective Studies , tRNA Methyltransferases/genetics
2.
J Biol Chem ; 281(9): 5916-27, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16339137

ABSTRACT

MPI encodes phosphomannose isomerase, which interconverts fructose 6-phosphate and mannose 6-phosphate (Man-6-P), used for glycoconjugate biosynthesis. MPI mutations in humans impair protein glycosylation causing congenital disorder of glycosylation Ib (CDG-Ib), but oral mannose supplements normalize glycosylation. To establish a mannose-responsive mouse model for CDG-Ib, we ablated Mpi and provided dams with mannose to rescue the anticipated defective glycosylation. Surprisingly, although glycosylation was normal, Mpi(-/-) embryos died around E11.5. Mannose supplementation even hastened their death, suggesting that man-nose was toxic. Mpi(-/-) embryos showed growth retardation and placental hyperplasia. More than 90% of Mpi(-/-) embryos failed to form yolk sac vasculature, and 35% failed chorioallantoic fusion. We generated primary embryonic fibroblasts to investigate the mechanisms leading to embryonic lethality and found that mannose caused a concentration- and time-dependent accumulation of Man 6-P in Mpi(-/-) fibroblasts. In parallel, ATP decreased by more than 70% after 24 h compared with Mpi(+/+) controls. In cell lysates, Man-6-P inhibited hexokinase (70%), phosphoglucose isomerase (65%), and glucose-6-phosphate dehydrogenase (85%), but not phosphofructokinase. Incubating intact Mpi(-/-) fibroblasts with 2-[(3)H]deoxyglucose confirmed mannose-dependent hexokinase inhibition. Our results in vitro suggest that mannose toxicity in Mpi(-/-) embryos is caused by Man-6-P accumulation, which inhibits glucose metabolism and depletes intracellular ATP. This was confirmed in E10.5 Mpi(-/-) embryos where Man-6-P increased more than 10 times, and ATP decreased by 50% compared with Mpi(+/+) littermates. Because Mpi ablation is embryonic lethal, a murine CDG-Ib model will require hypomorphic Mpi alleles.


Subject(s)
Embryo Loss , Embryo, Mammalian/physiology , Mannose-6-Phosphate Isomerase/deficiency , Mannose/metabolism , Mannosephosphates , Adenosine Triphosphate/metabolism , Animals , Carbohydrate Metabolism, Inborn Errors , Cells, Cultured , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/pathology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Targeting , Genotype , Gestational Age , Hexokinase/metabolism , Humans , Male , Mannose/administration & dosage , Mannose/toxicity , Mannose-6-Phosphate Isomerase/genetics , Mannose-6-Phosphate Isomerase/metabolism , Mannosephosphates/metabolism , Mannosephosphates/toxicity , Mice , Mice, Knockout , Polysaccharides/biosynthesis , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL