Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutr Metab (Lond) ; 17: 31, 2020.
Article in English | MEDLINE | ID: mdl-32322289

ABSTRACT

BACKGROUND: Pomegranate juice (POMj) contains abundant soluble polyphenolic antioxidant compounds and is recommended for its cardioprotective/atheroprotective properties. However, very few studies have investigated the efficacy of POMj supplementation to alter physiological responses during intensive physical exercise. This placebo-controlled study aimed to examine whether supplementation with natural polyphenol-rich-POMj could influence the ionic or lipid responses to an intensive resistance training session in elite athletes. METHODS: Nine elite weightlifters (21 ± 1 years) performed two Olympic-weightlifting sessions after ingesting placebo and POMj supplements. Venous blood samples were collected at rest and 3 min after each session for assessment of plasma sodium ([Na+]), potassium ([K+]), chloride ([Cl-]), calcium ([Ca2+]), triglyceride ([TG]) and high-density lipoprotein ([HDL-C]), low-density lipoprotein ([HDL-C]) and total ([TC]) cholesterol concentrations. RESULTS: Plasma [K+] and [TG] were lowered post-exercise compared to resting values in the PLA condition (p = 0.03 for K+ and p = 0.02 for TG) with no pre-to-post exercise differences in the other plasma ion and lipid markers (p > 0.05). Compared to rest, plasma [Na+] and [Cl-] were increased (p = 0.04, %change = 4.10% for Na+ and p = 0.02, %change = 4.44% for Cl-), but there were no differences in the other plasma ion or lipid markers post-exercise after POMj supplementation (p > 0.05). Post-exercise plasma [Na+], [Cl-], and [HDL-C] were greater following POMj supplementation compared to PLA (p = 0.01 for Cl- and HDL-C, p = 0.02 for Na+, and p = 0.04 for TC), with no between-supplement post-exercise differences in the other ion and lipid markers (p > 0.05). CONCLUSION: In conclusion, supplementation with POMj has the potential to attenuate the acute imbalance of plasma [K+] and to improve blood lipid responses (i.e., HDL-C) following resistance exercises in elite weightlifters. However, further large research in both athletic and non-athletic populations is needed to corroborate these preliminary observations and to elucidate the potential underlying mechanisms and translational potential of our novel observations. TRIAL REGISTRATION: Name of the registry:ClinicalTrials.gov PRSThe registration number:NCT02697903.Date of Registry: 03/03/2016 'Retrospectively registered'.The registration title: Pomegranate Improve Biological Recovery Kinetics in Elite Weightlifter.

2.
J Int Soc Sports Nutr ; 17(1): 15, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143716

ABSTRACT

BACKGROUND: Maximal strength-speed exercise is a powerful stimulus to acutely increase concentrations of circulating steroid hormones and homocysteine [Hcy]. There is some evidence that antioxidant beverages rich in polyphenols can attenuate [Hcy] levels and modulate endocrine responses in favor of an anabolic environment. Polyphenols-rich pomegranate (POM) have been reported to possess one of the highest antioxidant capacities compared to other purported nutraceuticals and other food stuffs. Studies focused on proving the beneficial effect of POM consumption during maximal strength exercises have only measured physical performance, muscle damage, oxidative stress and inflammatory responses, while POM effects on [Hcy] and hormonal adaptations are lacking. The aim of the present study was to investigate the effect of consuming natural polyphenol-rich pomegranate juice (POMj) on the acute and delayed [Hcy] and steroidal hormonal responses to a weightlifting exercises session. METHODS: Nine elite weightlifters (21.0 ± 1 years) performed two Olympic-weightlifting sessions after ingesting either the placebo (PLA) or POMj supplements. Venous blood samples were collected at rest and 3 min and 48 h after each session. RESULTS: Compared to baseline values, circulating cortisol [C] decreased (p < 0.01) and testosterone/cortisol [T/C] ratio increased immediately following the training session in both PLA and POMj conditions (p = 0.003 for PLA and p = 0.02 for POM). During the 48 h recovery period, all tested parameters were shown to recover to baseline values in both conditions with significant increases in [C] and decreases in [T/C] (p < 0.01 for PLA and p < 0.05 for POMj) from 3 min to 48 h post-exercises. Compared to PLA, a lower level of plasma testosterone [T] was registered 3 min post exercise using POMj supplementation (p = 0.012) and a significant decrease (p = 0.04, %change = - 14%) in plasma [Hcy] was registered during the 48 h recovery period only using POMj. A moderate correlation was observed between [Hcy] and [T] responses (p = 0.002, r = - 0.50). CONCLUSION: In conclusion, supplementation with POMj has the potential to attenuate the acute plasma [T] response, but did not effect 48 h recovery kinetics of [Hcy] following weightlifting exercise. Further studies investigating androgen levels in both plasma and muscular tissue are needed to resolve the functional consequences of the observed acute POMj effect on plasma [T]. TRIAL REGISTRATION: Clinical Trials.gov, ID: NCT02697903. Registered 03 March 2016.


Subject(s)
Fruit and Vegetable Juices , Homocysteine/blood , Hydrocortisone/blood , Polyphenols/administration & dosage , Pomegranate , Testosterone/blood , Weight Lifting/physiology , Dietary Supplements , Double-Blind Method , Humans , Young Adult
3.
J Strength Cond Res ; 25(9): 2400-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21869626

ABSTRACT

It is well recognized that acute strenuous exercise is accompanied by an increase in free-radical production and subsequent oxidative stress, in addition to changes in blood antioxidant status. Chronic exercise provides protection against exercise-induced oxidative stress by upregulating endogenous antioxidant defense systems. Little is known regarding the protective effect afforded by judo exercise. Therefore, we determined antioxidant and oxidative stress biomarkers at rest and in response to acute exercise in 10 competitive judokas and 10 sedentary subjects after mixed exercise (anaerobic followed by aerobic). The subjects performed a Wingate test, followed by 30 minutes of aerobic exercise performed at 60% of maximal aerobic power. Blood samples were taken, by an intravenous catheter, at rest (R), immediately after the physical exercise (P0), and at 5 (P5), 10 (P10), and 20 (P20) minutes postexercise. The measured parameters included the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione reductase, in addition to α-tocopherol, and total antioxidant status. Malondialdehyde was measured as a representation of lipid peroxidation. At rest, the judokas had higher values for all antioxidant and oxidative stress markers as compared to the sedentary subjects (p < 0.05). Plasma concentrations of all parameters except for α-tocopherol increased significantly above resting values for both the judokas and sedentary subjects (p < 0.05) and remained elevated at 20 minutes postexercise. A significant postexercise decrease was observed for α-tocopherol (p < 0.05) at P20 for judokas and at P5 for sedentary subjects. These data indicate that competitive judo athletes have higher endogenous antioxidant protection compared to sedentary subjects. However, both groups of subjects experience an increase in exercise-induced oxidative stress that is not different.


Subject(s)
Exercise/physiology , Martial Arts/physiology , Oxidative Stress/physiology , Rest/physiology , Sedentary Behavior , Adolescent , Athletes , Biomarkers/blood , Glutathione Peroxidase/blood , Glutathione Reductase/blood , Humans , Lipid Peroxidation/physiology , Male , Malondialdehyde/blood , Superoxide Dismutase/blood , Young Adult , alpha-Tocopherol/blood
SELECTION OF CITATIONS
SEARCH DETAIL