Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 8325, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594363

ABSTRACT

Although giant fennel is recognized as a "superfood" rich in phytochemicals with antioxidant activity, research into the antibacterial properties of its fruits has been relatively limited, compared to studies involving the root and aerial parts of the plant. In this study, seven solvents-acetone, methanol, ethanol, ethyl acetate, chloroform, water, and hexane-were used to extract the chemical constituents of the fruit of giant fennel (Ferula communis), a species of flowering plant in the carrot family Apiaceae. Specific attributes of these extracts were investigated using in silico simulations and in vitro bioassays. High-performance liquid chromatography equipped with a diode-array detector (HPLC-DAD) identified 15 compounds in giant fennel extract, with p-coumaric acid, 3-hydroxybenzoic acid, sinapic acid, and syringic acid being dominant. Among the solvents tested, ethanol demonstrated superior antioxidant activity and phenolic and flavonoid contents. F. communis extracts showed advanced inhibition of gram-negative pathogens (Escherichia coli and Proteus mirabilis) and variable antifungal activity against tested strains. Molecular docking simulations assessed the antioxidative, antibacterial, and antifungal properties of F. communis, facilitating innovative therapeutic development through predicted compound-protein interactions. In conclusion, the results validate the ethnomedicinal use and potential of F. communis. This highlights its significance in natural product research and ethnopharmacology.


Subject(s)
Ferula , Fruit , Solvents/chemistry , Fruit/chemistry , Antifungal Agents/pharmacology , Plant Extracts/chemistry , Antioxidants/chemistry , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Ethanol/analysis
2.
Life (Basel) ; 13(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36983930

ABSTRACT

The plant Brocchia cinerea (Delile) (B. cinerea) has many uses in traditional pharmacology. Aqueous (BCAE) and ethanolic extracts (BCEE) obtained from the aerial parts can be used as an alternative to some synthetic drugs. In vitro, DPPH, FRAP and TAC are three tests used to measure antioxidant efficacy. Antibacterial activities were determined against one Gram positive and two Gram negative strains of bacteria. The analgesic power was evaluated in vivo using the abdominal contortion model in mice, while carrageenan-induced edema in rats was the model chosen for the anti-inflammatory test; wound healing was evaluated in an experimental second degree burn model. The results of the phytochemical analysis showed that BCEE had the greatest content of polyphenols (21.06 mg AGE/g extract), flavonoids (10.43 mg QE/g extract) and tannins (24.05 mg TAE/g extract). HPLC-DAD reveals the high content of gallic acid, quercetin and caffeic acid in extracts. BCEE has a strong antiradical potency against DPPH (IC50 = 0.14 mg/mL) and a medium iron reducing activity (EC50 = 0.24 mg/mL), while BCAE inhibited the growth of the antibiotic resistant bacterium, P. aeruginosa (MIC = 10 mg/mL). BCAE also exhibited significant pharmacological effects and analgesic efficacy (55.81% inhibition 55.64% for the standard used) and the re-epithelialization of wounds, with 96.91% against 98.60% for the standard. These results confirm the validity of the traditional applications of this plant and its potential as a model to develop analogous drugs.

3.
Article in English | MEDLINE | ID: mdl-36204116

ABSTRACT

Juniperus thurifera is a native species to the mountains of the western Mediterranean region. It is used in traditional medicine as a natural treatment against infections. The present study aimed to carry out the chemical analysis and evaluate the antioxidant, antimicrobial, as well as in silico inhibition studies of the essential oils from Juniperus thurifera bark (EOEJT). Chemical characterization of EOEJT was done by gas chromatography (GC-MS). We have performed three antioxidant assays (Reducing power (FRAP), 2, 2-diphenylpicrylhydrazyl (DPPH), and total antioxidant capacity (TAC)) of the EOEJT. We next evaluated the antimicrobial activity against in silico study, which was carried out to help evaluate the inhibitory effect of EOEJT against NADPH oxidase. Results of the GC/MS analysis revealed seven major compounds in EOEJT wherein muurolol (36%) and elemol (26%) were the major components. Moreover, EOEJT possessed interesting antioxidant potential with an IC50 respectively of 21.25 ± 1.02 µg/mL, 481.02 ± 5.25 µg/mL, and 271 µg EAA/mg in DPPH, FRAP, and total antioxidant capacity systems. Molecular docking of EOEJT in NADPH oxidase active site showed inhibitory activity of α-cadinol and muurolol with a glide score of -6.041 and -5.956 Kcal/mol, respectively. As regards the antibacterial and antifungal capacities, EOEJT was active against all tested bacteria and all fungi, notably, against Escherichia coli K12 with an inhibition diameter of 21 mm and a MIC value of 0.67 mg/mL, as well as against Proteus mirabilis ATCC 29906 with an inhibition diameter of 18.33 ± 1.15 mm and a MIC value of 1.34 mg/mL. A more pronounced effect was recorded for the fungal pathogens Fusarium oxysporum MTCC 9913 with inhibition of 37.44 ± 0.28% and MIC value of 6.45 mg/mL, as well as against Candida albicans ATCC 10231 with an inhibition diameter of 20.33 ± 1.15 mm and a MIC value of 0.67 ± 0.00 mg/mL. Altogether, these results highlight the importance of EOEJT as a source of natural antibacterial and antioxidant drugs to fight clinically important pathogenic strains.

4.
Article in English | MEDLINE | ID: mdl-36310621

ABSTRACT

Jambosa caryophyllus has been used in traditional phytotherapy as a treatment against infections. In the present work, essential oils extracted from clove buds (Jambosa caryophyllus ) (EO-JC) were investigated for their composition, antifungal, and insecticidal properties. Extraction of EO-JC was performed by use of hydrodistillation using a Clevenger-type apparatus, and the EOs were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Antifungal activity of EO-JC was evaluated by the use of solid-state diffusion (disc method) and microdilution to determine the minimum inhibitory concentration (MIC), against three strains of fungus, Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum. Insecticidal activity of EO-JC against the cowpea weevil, Callosobruchus maculatus, was determined to assess utility of EO-JC to control this pest. Several exposures including inhalation and contact were used to determine lethality, as well as the repulsion test was conducted at concentrations of 4, 8, 16, and 32 µL EO-JC. Characterization of EO-JC by GC/MS revealed 34 compounds accounting for 99.98% of the mass of the extract. The predominant compound was eugenol (26.80%) followed by ß-caryophyllene (16.03%) and eugenyl acetate (5.83%). The antifungal activity of EO-JC on solid media exhibited inhibitions in the range of 49% to 87%, and MIC was between 3.125 and 7.80 µg EO-JC/mL. Insecticidal activity, as determined by the use of the inhalation test, and expressed as the LD50 and LD95 after 96 hours of exposure was 2.32 and 21.92 µL/L air, respectively. In the contact test, a 96-hour exposure resulted in LD50 and LD95 of 5.51 and 11.05 µL/L of air, respectively. EO-JC exhibited insecticidal activity against fungi and pest chickpea weevil.

5.
Biomed Res Int ; 2022: 5218950, 2022.
Article in English | MEDLINE | ID: mdl-35958807

ABSTRACT

Nigella sativa (NS) is a plant that has long been utilized in traditional medicine as a treatment for certain diseases. The aim of this work was to valorize the essential oil (EO) of this species by phytochemical analysis and antimicrobial and antioxidant evaluation. EO was extracted by hydrodistillation from the seeds of Nigella sativa (EO-NS). Phytochemical content of EO-NS was evaluated by use of gas chromatography coupled to mass spectrometry (GC-MS/MS). Antioxidant ability was in vitro determined by use of three assays: 2.2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing power (FRAP), and total antioxidant capacity (TAC) relative to two synthetic antioxidants: BHT and quercetin. Antimicrobial effect was evaluated against four clinically important bacterial strains (Staphylococcus aureus, ATCC 6633; Escherichia coli, K12; Bacillus subtilis, DSM 6333; and Proteus mirabilis, ATCC 29906) and against four fungal strains (Candida albicans, ATCC 10231; Aspergillus niger, MTCC 282; Aspergillus flavus, MTCC 9606; and Fusarium oxysporum, MTCC 9913). Fifteen constituents that accounted for the majority of the mass of the EO-NS were identified and quantified by use of GC-MSMS. The main component was O-cymene (37.82%), followed by carvacrol (17.68%), α-pinene (10.09%), trans-sabinene hydrate (9.90%), and 4-terpineol (7.15%). EO-NS exhibited significant antioxidant activity with IC50, EC50, and total antioxidant capacity (TAC) of 0.017 ± 0.0002, 0.1196 ± 0.012, and 114.059 ± 0.97 mg EAA/g, respectively. Additionally, EO-NS exhibited promising antibacterial activity on all strains under investigation, especially on E. coli K12 resulting in inhibition diameter of 38.67 ± 0.58 mm and a minimum inhibitory concentration (MIC) of 1.34 ± 0.00 µg/mL. Also, EO-NS had significant antifungal efficacy, with a percentage of inhibition of 67.45 ± 2.31% and MIC of 2.69 ± 0.00 µg/mL against F. oxysporum, MTCC 9913 and with a diameter of inhibition 42 ± 0.00 mm and MIC of 0.67 ± 0.00 µg/mL against C. albicans. To minimize development of antibiotic-resistant bacteria, EO-NS can be utilized as a natural, alternative to synthetic antibiotics and antioxidants to treat free radicals implicated in microbial infection-related inflammatory reactions.


Subject(s)
Anti-Infective Agents , Apiaceae , Carum , Nigella sativa , Oils, Volatile , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Candida albicans , Escherichia coli , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Phytochemicals/pharmacology , Seeds , Tandem Mass Spectrometry
6.
Molecules ; 27(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35164402

ABSTRACT

This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 µg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 µg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.


Subject(s)
Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Antioxidants/chemistry , Artemisia/chemistry , Oils, Volatile/chemistry , Phytochemicals/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Drug Resistance, Microbial , Fungi/drug effects , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
7.
Article in English | MEDLINE | ID: mdl-34691201

ABSTRACT

The chemical composition and antibacterial, insecticidal, and antioxidant properties of the essential oil from Mentha pulegium L. (M. pulegium) growing in Morocco were investigated in this work. To achieve this goal, the oils were obtained by using hydrodistillation before being characterized by GC-MS. The antibacterial and antifungal activities were conducted against pathogenic strains using the disc diffusion and MICS bioassays. The insecticidal activity was carried out versus C. maculatus using contact and inhalation tests. The antioxidant activity was performed by using DPPH and total antioxidant capacity bioassays. The chemical analysis of the oil showed that 20 compounds were identified, which represented 98.91% of the total oil. In the oil, the main components detected were R-(+)-pulegone (76.35%), carvone (5.84%), dihydrocarvone (5.09%), and octanol-3 (2.25%). The essential oil has moderate-to-strong broad-spectrum antibacterial and antifungal properties; the results showed that B. subtilis was the most sensitive strain to M. pulegium oil, with the largest inhibition diameter (25 ± 0.33). For the antifungal activity, the results obtained indicated that Aspergillus niger was the most sensitive fungal strain to M. pulegium oil with an inhibition percentage up to 100%. Regarding the insecticidal activity, the inhalation test showed a high efficacy (100% mortality), and a lethal concentration of LC50 = 1.41 + 0.48 µL/L air was obtained after 24 hours of exposure. Moreover, the contact test showed that a total reduction in fertility and emergence was obtained with a dose of 20 µL/mL of acetone. Regarding the antioxidant activity, the sample concentration necessary to inhibit 50% of HE radicals (IC50) was 7.659 mg/mL (DPPH) and 583.066 57.05 mg EAA/g EO (TAC).

SELECTION OF CITATIONS
SEARCH DETAIL