Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Environ Sci Pollut Res Int ; 30(57): 120044-120062, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37936030

ABSTRACT

Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.


Subject(s)
Oryza , Selenium , Antioxidants/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Seedlings , Selenium/pharmacology , Selenium/metabolism , Chromium/metabolism , Oryza/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Defense Mechanisms
2.
Environ Sci Pollut Res Int ; 30(56): 118830-118854, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922085

ABSTRACT

Using green synthesis methods to produce halophytic nanoparticles presents a promising and cost-effective approach for enhancing plant growth in saline environments, offering agricultural resilience as an alternative to traditional chemical methods. This study focuses on synthesizing zinc oxide (ZnO) nanoparticles derived from the halophyte Withania somnifera, showcasing their potential in ameliorating tomato growth under salinity stress. The biosynthesis of ZnO nanoparticles was initially optimized (i.e., salt concentration, the amount of plant extract, pH, and temperature) using a central composite design (CCD) of response surface methodology (RSM) together with UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS) to comprehensively characterize the biosynthesized ZnO NPs. The central composite design (CCD) based response surface methodology (RSM) was used to optimize the biosynthesis of ZnO nanoparticles (NPs) by adjusting salt concentration, plant extract, pH, and temperature. The ZnO NPs were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). FT-IR showed an absorption peak of ZnO between 400 and 600 cm-1, while SEM showed irregular shapes ranging between 1.3 and 6 nm. The data of EDX showed the presence of Zn (77.52%) and O (22.48%) levels, which exhibited the high purity synthesized ZnO under saline conditions. Introducing ZnO nanoparticles to tomato plants resulted in a remarkable 2.3-fold increase in shoot length in T23 (100 mg/L ZnO nanoparticles + 50 mM NaCl). There was an observable increase in foliage at T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl). Tomato plants treated with T2 (20 mg L-1 ZnO) and T23 (100 mg L-1 ZnO-NPs + 50 mM NaCl) improved root elongation compared to the control plant group. Both fresh and dry leaf masses were significantly improved in T1 (10 mg L-1 ZnO) by 7.1-fold and T12 (10 mg L-1 ZnO-NPs + 100 mM NaCl) by 0.8-fold. The concentration of Zn was higher in T12 (10 mg L-1 ZnO NPs + 100 mM NaCl) among all treatments. Our findings prove that utilizing ZnO nanoparticles under saline conditions effectively promotes tomato plants' growth, thereby mitigating the negative impacts of salt stress.


Subject(s)
Metal Nanoparticles , Nanoparticles , Solanum lycopersicum , Zinc Oxide , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Salt-Tolerant Plants , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Sodium Chloride , Nanoparticles/chemistry , Plant Extracts/chemistry , X-Ray Diffraction , Microbial Sensitivity Tests
3.
Environ Sci Pollut Res Int ; 30(48): 104933-104957, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37718363

ABSTRACT

The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Petroleum/analysis , Soil Pollutants/analysis , Hydrocarbons/metabolism , Petroleum Pollution/analysis , Soil , Polycyclic Aromatic Hydrocarbons/analysis , Soil Microbiology , Fungi/metabolism , Mixed Function Oxygenases/metabolism
4.
Antioxidants (Basel) ; 11(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35453341

ABSTRACT

Citrullus colocynthis (Cucurbitaceae) is an important medicinal plant traditionally used in the United Arab Emirates (UAE). In a recent study, it has been reported that different individuals of the same population of C. colocynthis, growing in the hot arid desert of the UAE, exhibited variations in their fruit size, color, and stripe pattern. In addition, these plants differed genetically, and their seeds showed variation in size, color, and germination behavior (hereinafter, these individuals are referred to as accessions). In the present study, the total phenolic content (TPC) and antioxidant activity of different fruit parts (rinds, pulps, and seeds) of three different accessions with significant genetic variations, from a single C. colocynthis population, were assessed in response to different seasonal environments. Green fruits were collected in summer and winter from three accessions growing in the botanic garden of the University of Sharjah, UAE. Methanolic extracts from different fruit parts were prepared. The TPC was qualitatively determined by a Folin-Ciocalteu assay, while the antioxidant capacity was analyzed using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging ability. The metabolic profiling of the antioxidant metabolites was determined using a gas chromatograph coupled to mass spectrometry (GC-MS), associated with a literature search. The results showed that the TPC and the DPPH free radical scavenging activity varied between seasons, accessions, and fruit parts. The highest phenolics were in rinds, but the highest antioxidant activities were in seeds during the summer, reflecting the role of these compounds in protecting the developed seeds from harsh environmental conditions. The metabolomic analysis revealed the presence of 28 metabolites with significant antioxidant activities relevant to fruit parts and season. Collectively, the formation of phenolics and antioxidant activity in different fruit parts is environmentally and genetically dependent.

5.
Phytochem Rev ; 21(1): 291-312, 2022.
Article in English | MEDLINE | ID: mdl-34054380

ABSTRACT

Flavonoids are a class of phenolic natural products, well-identified in traditional and modern medicines in the treatment of several diseases including viral infection. Flavonoids showed potential inhibitory activity against coronaviruses including the current pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and designated as COVID-19. Here, we have collected all data related to the potential inhibitory mechanisms of flavonoids against SARS-CoV-2 infection and their significant immunomodulatory activities. The data were mapped and compared to elect major flavonoids with a promising role in the current pandemic. Further, we have linked the global existence of flavonoids in medicinal plants and their role in protection against COVID-19. Computational analysis predicted that flavonoids can exhibit potential inhibitory activity against SARS-CoV-2 by binding to essential viral targets required in virus entry and/ or replication. Flavonoids also showed excellent immunomodulatory and anti-inflammatory activities including the inhibition of various inflammatory cytokines. Further, flavonoids showed significant ability to reduce the exacerbation of COVID-19 in the case of obesity via promoting lipids metabolism. Moreover, flavonoids exhibit a high safety profile, suitable bioavailability, and no significant adverse effects. For instance, plants rich in flavonoids are globally distributed and can offer great protection from COVID-19. The data described in this study strongly highlighted that flavonoids particularly quercetin and luteolin can exhibit promising multi-target activity against SARS-CoV-2, which promote their use in the current and expected future outbreaks. Therefore, a regimen of flavonoid-rich plants can be recommended to supplement a sufficient amount of flavonoids for the protection and treatment from SARS-CoV-2 infection.

6.
Chem Biol Interact ; 333: 109318, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33186599

ABSTRACT

Antimicrobial resistance is at increasing risk worldwide since it is threatening the ability to control common infectious diseases, resulting in prolonged illness, disability, and death. Herein, we inspired by the effective plant phytochemical mechanisms evolved to overcome microbial pathogenesis and evolved resistance. Cuminaldehyde is previously reported as the main antibacterial component in Calligonum comosum essential oil. The toxicity of cuminaldehyde limits its medical application for human use. On the other hand, compared to cuminaldehyde, the plant total extract showed similar antibacterial activities, while maintained lower toxicity, although it contains 22 times less cuminaldehyde. Thus, we assumed that other components in the plant extracts specifically affect bacteria but not mammalian cells. Bioassay-guided fractionations combined with comparative metabolomics analysis of different plant extracts were employed. The results revealed the presence of bacterial species-specific phytochemicals. Cinnamyl linoleate and linoleic acid enhanced the antibacterial activities of cuminaldehyde and ampicillin against S. aureus including MRSA, while decanal and cinnamyl linoleate enhanced the activities against E. coli. Computational modeling and enzyme inhibition assays indicated that cinnamyl linoleate selectively bind to bacterial ribosomal RNA methyltransferase, an important enzyme involved in the virulence and resistance of multidrug resistant bacteria. The results obtained can be employed for the future preparation of pharmaceutical formula containing cinnamyl linoleate in order to overcome evolved multidrug resistance behaviors by microbes.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Caryophyllales/chemistry , Drug Design , Drug Resistance, Bacterial/drug effects , Oils, Volatile/chemistry , Phytochemicals/chemistry , Anti-Bacterial Agents/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line , Chemistry Techniques, Synthetic , Drug Resistance, Multiple/drug effects , Humans
7.
Biol Trace Elem Res ; 194(2): 560-569, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31267442

ABSTRACT

Over recent years, metal nanoparticles have largely been investigated due to their potential activities. This study focused on synthesizing silver nanoparticles (AgNPs) using the desert plant Cyperus conglomeratus, which is the most abundant species on the sand dunes in the UAE, and their anticancer activity. The synthesized AgNPs were characterized using UV-visible spectra, X-ray diffraction, energy dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, and scanning electron microscope. The results showed that the AgNPs are monodispersed and mostly spherical in shape. The cytotoxicity effects were investigated against breast cancer cells MCF-7 and normal fibroblast using MTT assay which showed selective cytotoxicity against MCF-7 with an IC50 at 5 µg/mL but not fibroblast. Moreover, the apoptotic effects were confirmed using annexin V-FITC-PI double staining kit and real-time PCR for apoptotic genes. Therefore, our results revealed potential anticancer applications of the C. conglomeratus biosynthesized silver nanoparticles.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cyperus , Metal Nanoparticles , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Female , Humans , MCF-7 Cells , Plant Extracts/pharmacology , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
8.
Nanomaterials (Basel) ; 9(12)2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31805737

ABSTRACT

Nanoparticle (NP) synthesis by biological systems is more cost-effective, safe, and environmentally friendly when compared to currently used chemical and physical methods. Although many studies have utilized different plant extracts to synthesize NPs, few studies have incorporated living plants. In this study, silver nanoparticles (AgNPs) were synthesized exogenously by Tephrosia apollinea living plant system under the combined stresses of silver nitrate and different levels of drought stress simulated by Polyethylene glycol (PEG) (0, -0.1, -0.2, and -0.4 MPa for three and six days). Biomass, cell death, and H2O2 content were evaluated to determine the toxicological effect of the treatments on the plant. More severe effects were detected in day 6 plants compared to day 3 plants, and at higher drought levels. UV-visible spectrum, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy were used to detect and characterize the T. apollinea synthesized NPs. The shapes of the NPs were spherical and cubic with different phytochemicals being the possible capping agents. Broth microdilution was used to determine the antimicrobial activity of the NPs against Escherichia coli and Staphylococcus aureus. In this case, antimicrobial activity increased at higher PEG concentrations. Bactericidal effects were observed against E. coli, while only bacteriostatic effects were detected against S. aureus.

9.
J Ethnopharmacol ; 231: 403-408, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30508621

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Several natural products derived from plant sources are developed to remarkable medicines based on their traditional uses. Ziziphus, a worldwide known plant, is proven for potential cytotoxic activity. However, the plant growing at the unique hot environmental climate of UAE was never investigated. Different phytochemicals may be produced from the same plant genotype at different climates leading to variable pharmacological activities. AIM OF THE STUDY: The study was conducted in order to investigate phytochemicals in the UAE native Z. spina-christi plant and its anticancer activity. MATERIALS AND METHODS: Z. spina-christi plant were collected, dried and dissected into leaves, stems and thorns. The plant organs were subjected to comparative fractionation-based anticancer assay followed by spectroscopic analysis of a uniquely isolated compound. RESULTS: The results indicate that a novel betulin derivative (13-dehydrobetulin) isolated from plant stem exhibited substantial anticancer activity specifically against liver cancer and with wide therapeutic range. CONCLUSIONS: Growth of cytotoxic traditionally-known plant remedy at harsh environmental habitat advances its anticancer activity due to production of novel phytochemical with optimum activity and minimal toxicity. Furthermore, such approach may be a future to develop novel lead compounds with optimum activity.


Subject(s)
Antineoplastic Agents/pharmacology , Triterpenes/pharmacology , Ziziphus/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Climate , Ecosystem , Hot Temperature , Humans , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Triterpenes/analysis , United Arab Emirates
10.
Recent Pat Food Nutr Agric ; 9(1): 55-64, 2018.
Article in English | MEDLINE | ID: mdl-29629668

ABSTRACT

BACKGROUND: Commercially available herbal and medicinal plants-based products are susceptible to substitution or contamination with other unlabeled or undesired materials. This will reduce the quality of the product, and may lead to intoxication and allergy. METHODS: DNA barcoding is a molecular technology that allows the identification of plant materials at the species level, by sequencing short stretches of standardized gene sequences from nuclear or organelle genome in an easy, rapid, accurate and cost-effective manner. The aim of this research is to apply DNA barcoding to investigate the authenticity of commercially available herbal and medicinal plant-based products within the UAE markets. A total of 30 samples were analyzed, covering six different herbal products (thyme, cardamom, anise, basil, turmeric, and ginger), obtained in fresh and dried forms. DNA was extracted and three barcode loci including (rbcL), (matK) and (ITS) were amplified, sequenced and analyzed by BLAST. RESULTS: In terms of amplification efficiency, the results suggest that rbcL is the most suitable marker for species identification giving 75% of successful amplification, followed by ITS with 66.67%, whereas matK had the lowest with 18.52%. Adulteration was detected in two samples, ginger powder and dry thyme leave samples. The adulterants were from Triticum and Oryza genera. CONCLUSION: Clearly, the results from this report provide evidence that DNA barcoding technique is efficient in the recognition of commercial plant products. Thus, it can be considered as a fast, effective, and reliable method to detect adulteration in plant-based products in the UAE market.


Subject(s)
DNA Barcoding, Taxonomic , Drug Contamination , Plants, Medicinal/genetics , DNA, Plant , Humans , Patents as Topic , Quality Control , Reproducibility of Results , United Arab Emirates
11.
BMC Complement Altern Med ; 17(1): 257, 2017 May 08.
Article in English | MEDLINE | ID: mdl-28482836

ABSTRACT

BACKGROUND: Microbial infections are diverse and cause serious human diseases. Candida albicans infections are serious healthcare-related infections that are complicated by its morphological switching from yeast to hyphae, resistant biofilm formation and mixed infections with bacteria. Due to the increase in drug resistance to currently used antimicrobial agents and the presence of undesirable side effects, the need for safe and effective novel therapies is important. Compounds derived from plants are known for their medicinal properties including antimicrobial activities. The purpose of the study was to compare and evaluate the anti-Candida activities of several medicinal plants in order for the selection of a herbal drug for human use as effective antimicrobial. The selection was taking into considerations two important parameters; parameters related to the selected drug including activity, stability, solubility and toxicity and parameters related to the pathogen including its different dynamic growth and its accompanied secondary bacterial infections. METHODS: Seven different plants including Avicennia marina (Qurm), Fagonia indica (Shoka'a), Lawsania inermis (Henna), Portulaca oleracea (Baq'lah), Salvadora persica (Souwak), Ziziphus spina- Christi (Sidr) and Asphodelus tenuifolius (Kufer) were ground and extracted with ethanol. The ethanol extracts were evaporated and the residual extract dissolved in water prior to testing against Candida albicans in its different morphologies. The antibacterial and cytotoxic effects of the plants extracts were also tested. RESULTS: Out of the seven tested plants, L. inermis and P. oleracea showed significant anti-Candida activity with MIC ~10 µg/mL. Furthermore, both plant extracts were able to inhibit C. albicans growth at its dynamic growth phases including biofilm formation and age resistance. Accompanied secondary bacterial infections can complicate Candida pathogenesis. L. inermis and P. oleracea extracts showed effective antibacterial activities against S. aureus, P. aeruginosa, E. coli, and the multidrug resistant (MDR) A. baumannii and Klebsiella pneumoniae. Both extracts showed no toxicity when measured at their MIC on human erythrocytes. CONCLUSION: The results from this study suggested that L. inermis and P. oleracea extracts and/or their chemicals are likely to be promising drugs for human use against C. albicans and MDR bacteria.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Plant Extracts/metabolism , Plants, Medicinal/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Bacteria/drug effects , Bacteria/growth & development , Candida/growth & development , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL