Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Control Release ; 311-312: 170-189, 2019 10.
Article in English | MEDLINE | ID: mdl-31472191

ABSTRACT

Over the past two decades, the development of plasmonic nanoparticle (NPs), especially gold (Au) NPs, is being pursued more seriously in the medical fields such as imaging, drug delivery, and theranostic systems. However, there is no comprehensive review on the effect of the physical and chemical parameters of AuNPs on their plasmonic properties as well as the use of these unique characteristic in medical activities such as imaging and therapeutics. Therefore, in this literature the surface plasmon resonance (SPR) modeling of AuNPs was accurately captured toward precision medicine. Indeed, we investigated the importance of plasmonic properties of AuNPs in optical manipulation, imaging, drug delivery, and photothermal therapy (PTT) of cancerous cells based on their physicochemical properties. Finally, some challenges regarding the commercialization of AuNPs in future medicine such as, cytotoxicity, lack of standards for medical applications, high cost, and time-consuming process were discussed.


Subject(s)
Gold/administration & dosage , Metal Nanoparticles/administration & dosage , Animals , Diagnostic Imaging , Drug Delivery Systems , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optical Phenomena , Phototherapy
2.
ACS Nano ; 12(9): 9279-9290, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30118603

ABSTRACT

Most cancer-related deaths come from metastasis. It was recently discovered that nanoparticles could inhibit cancer cell migration. Whereas most researchers focus on single-cell migration, the effect of nanoparticle treatment on collective cell migration has not been explored. Collective migration occurs commonly in many types of cancer metastasis, where a group of cancer cells move together, which requires the contractility of the cytoskeleton filaments and the connection of neighboring cells by the cell junction proteins. Here, we demonstrate that gold nanorods (AuNRs) and the introduction of near-infrared light could inhibit the cancer cell collective migration by altering the actin filaments and cell junctions with significantly triggered phosphorylation changes of essential proteins, using mass spectrometry-based phosphoproteomics. Further observation using super-resolution stochastic optical reconstruction microscopy (STORM) showed the actin cytoskeleton filament bundles were disturbed, which is difficult to differentiate under a normal fluorescence microscope. The decreased expression level of N-cadherin junctions and morphological changes of tight junction protein zonula occludens 2 were also observed. All of these results indicate possible functions of the AuNR treatments in regulating and remodeling the actin filaments and cell junction proteins, which contribute to decreasing cancer cell collective migration.


Subject(s)
Actins/metabolism , Gold/pharmacology , Intercellular Junctions/drug effects , Metal Nanoparticles/chemistry , Phototherapy , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gold/chemistry , HeLa Cells , Humans , Infrared Rays , MCF-7 Cells , Tumor Cells, Cultured
3.
Bioconjug Chem ; 28(9): 2452-2460, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28837765

ABSTRACT

Despite the important applications of near-infrared (NIR) absorbing nanomaterials in plasmonic photothermal therapy (PPT), their high yield synthesis and nonspecific heating during the active- and passive-targeted cancer therapeutic strategies remain challenging. In the present work, we systematically demonstrate that in situ aggregation of typical non-NIR absorbing plasmonic nanoparticles at the nuclear region of the cells could translate them into an effective NIR photoabsorber in plasmonic photothermal therapy of cancer due to a significant shift of the plasmonic absorption band to the NIR region. We evaluated the potential of nuclear-targeted AuNSs as photoabsorber at various stages of endocytosis by virtue of their inherent in situ assembling capabilities at the nuclear region of the cells, which has been considered as one of the most thermolabile structures within the cells, to selectively destruct cancer cells with minimal damage to healthy cells. Various plasmonic nanoparticles such as rods and cubes have been exploited to elucidate the role of plasmonic field coupling in assembled nanoparticles and their subsequent killing efficiency. The NIR absorbing capabilities of aggregated AuNSs have been further demonstrated both experimentally and theoretically using discrete dipolar approximation (DDA) techniques, which was in concordance with the observed results in plasmonic photothermal therapeutic studies. While the current work was able to demonstrate the utility of non-NIR absorbing plasmonic nanoparticles as a potential alternative for plasmonic photothermal therapy by inducing localized plasmonic heating at the nuclear region of the cells, these findings could potentially open up new possibilities in developing more efficient nanoparticles for efficient cancer treatment modalities.


Subject(s)
Cell Nucleus/pathology , Gold/metabolism , Hyperthermia, Induced/methods , Nanospheres/metabolism , Neoplasms/therapy , Phototherapy/methods , Cell Line, Tumor , Cell Nucleus/metabolism , Gold/analysis , Humans , Infrared Rays , Nanospheres/analysis , Nanospheres/ultrastructure , Neoplasms/pathology
4.
Proc Natl Acad Sci U S A ; 114(28): E5655-E5663, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28652358

ABSTRACT

Metastasis is responsible for most cancer-related deaths, but the current clinical treatments are not effective. Recently, gold nanoparticles (AuNPs) were discovered to inhibit cancer cell migration and prevent metastasis. Rationally designed AuNPs could greatly benefit their antimigration property, but the molecular mechanisms need to be explored. Cytoskeletons are cell structural proteins that closely relate to migration, and surface receptor integrins play critical roles in controlling the organization of cytoskeletons. Herein, we developed a strategy to inhibit cancer cell migration by targeting integrins, using Arg-Gly-Asp (RGD) peptide-functionalized gold nanorods. To enhance the effect, AuNRs were further activated with 808-nm near-infrared (NIR) light to generate heat for photothermal therapy (PPTT), where the temperature was adjusted not to affect the cell viability/proliferation. Our results demonstrate changes in cell morphology, observed as cytoskeleton protrusions-i.e., lamellipodia and filopodia-were reduced after treatment. The Western blot analysis indicates the downstream effectors of integrin were attracted toward the antimigration direction. Proteomics results indicated broad perturbations in four signaling pathways, Rho GTPases, actin, microtubule, and kinases-related pathways, which are the downstream regulators of integrins. Due to the dominant role of integrins in controlling cytoskeleton, focal adhesion, actomyosin contraction, and actin and microtubule assembly have been disrupted by targeting integrins. PPTT further enhanced the remodeling of cytoskeletal proteins and decreased migration. In summary, the ability of targeting AuNRs to cancer cell integrins and the introduction of PPTT stimulated broad regulation on the cytoskeleton, which provides the evidence for a potential medical application for controlling cancer metastasis.


Subject(s)
Cytoskeleton/metabolism , Gold/chemistry , Integrins/metabolism , Nanotubes/chemistry , Neoplasms/pathology , Neoplasms/therapy , Phototherapy/methods , Actomyosin/metabolism , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Survival , Cytoskeletal Proteins , Disulfides , Humans , Hyperthermia, Induced , Mouth Neoplasms/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/metabolism , Proteomics
5.
Proc Natl Acad Sci U S A ; 114(15): E3110-E3118, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28356516

ABSTRACT

Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin (RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm2) to achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome c and p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse models. These findings provide a strong framework for the translation of PPTT to the clinic.


Subject(s)
Carcinoma, Squamous Cell/therapy , Gold/pharmacology , Head and Neck Neoplasms/therapy , Hyperthermia, Induced , Lasers , Nanotubes/chemistry , Phototherapy , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Combined Modality Therapy , Female , Gold/chemistry , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Proteomics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
ACS Nano ; 11(1): 579-586, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28029783

ABSTRACT

As a minimally invasive therapeutic strategy, gold nanorod (AuNR)-based plasmonic photothermal therapy (PPT) has shown significant promise for the selective ablation of cancer cells. However, the heat stress experienced by cells during the PPT treatment produces significant amounts of reactive oxygen species (ROS), which could harm healthy, untreated tissue near the point of care by inducing irreversible damage to DNA, lipids, and proteins, potentially causing cellular dysfunction or mutation. In this study, we utilized biocompatible Pt-coated AuNRs (PtAuNRs) with different platinum shell thicknesses as an alternative to AuNRs often used for the treatment. We show that the PtAuNRs maintain the efficacy of traditional AuNRs for inducing cell death while scavenging the ROS formed as a byproduct during PPT treatment, thereby protecting healthy, untreated cells from indirect death resulting from ROS formation. The synergistic effect of PtAuNRs in effectively killing cancer cells through hyperthermia with the simultaneous removal of heat stress induced ROS during PPT was validated in vitro using cell viability and fluorescence assays. Our results suggest that the high photothermal efficiency and ROS-scavenging activity of PtAuNRs makes them ideal candidates to improve the therapeutic efficacy of PPT treatment while reducing the risk of undesired side effects due to heat-stress-induced ROS formation.


Subject(s)
Free Radical Scavengers/pharmacology , Gold/pharmacology , Metal Nanoparticles/chemistry , Phototherapy/adverse effects , Platinum/pharmacology , Reactive Oxygen Species/pharmacology , Cell Survival/drug effects , Cells, Cultured , Free Radical Scavengers/chemistry , Gold/chemistry , Humans , Oxidative Stress/drug effects , Particle Size , Platinum/chemistry , Reactive Oxygen Species/chemistry , Surface Properties , Temperature
7.
J Am Chem Soc ; 138(47): 15434-15442, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27809520

ABSTRACT

In cancer plasmonic photothermal therapy (PPTT), plasmonic nanoparticles are used to convert light into localized heat, leading to cancer cell death. Among plasmonic nanoparticles, gold nanorods (AuNRs) with specific dimensions enabling them to absorb near-infrared laser light have been widely used. The detailed mechanism of PPTT therapy, however, still remains poorly understood. Typically, surface-enhanced Raman spectroscopy (SERS) has been used to detect time-dependent changes in the intensity of the vibration frequencies of molecules that appear or disappear during different cellular processes. A complete proven assignment of the molecular identity of these vibrations and their biological importance has not yet been accomplished. Mass spectrometry (MS) is a powerful technique that is able to accurately identify molecules in chemical mixtures by observing their m/z values and fragmentation patterns. Here, we complemented the study of changes in SERS spectra with MS-based metabolomics and proteomics to identify the chemical species responsible for the observed changes in SERS band intensities during PPTT. We observed an increase in intensity of the bands at around 1000, 1207, and 1580 cm-1, which were assigned in the literature to phenylalanine, albeit with dispute. Our metabolomics results showed increased levels of phenylalanine, its derivatives, and phenylalanine-containing peptides, providing evidence for more confidence in the SERS peak assignments. To better understand the mechanism of phenylalanine increase upon PPTT, we combined metabolomics and proteomics results through network analysis, which proved that phenylalanine metabolism was perturbed. Furthermore, several apoptosis pathways were activated via key proteins (e.g., HADHA and ACAT1), consistent with the proposed role of altered phenylalanine metabolism in inducing apoptosis. Our study shows that the integration of the SERS with MS-based metabolomics and proteomics can assist the assignment of signals in SERS spectra and further characterize the related molecular mechanisms of the cellular processes involved in PPTT.


Subject(s)
Gold/pharmacology , Metabolomics , Nanotubes/chemistry , Neoplasms/pathology , Phenylalanine/metabolism , Phototherapy , Proteomics , Spectrum Analysis, Raman , Cell Death/drug effects , Cell Line, Tumor , Gold/chemistry , Humans , Particle Size , Surface Properties , Time Factors
8.
Int J Nanomedicine ; 11: 4849-4863, 2016.
Article in English | MEDLINE | ID: mdl-27703351

ABSTRACT

Plasmonic photothermal therapy (PPTT) is a cancer therapy in which gold nanorods are injected at the site of a tumor before near-infrared light is transiently applied to the tumor causing localized cell death. Previously, PPTT studies have been carried out on xenograft mice models. Herein, we report a study showing the feasibility of PPTT as applied to natural tumors in the mammary glands of dogs and cats, which more realistically represent their human equivalents at the molecular level. We optimized a regime of three low PPTT doses at 2-week intervals that ablated tumors mainly via apoptosis in 13 natural mammary gland tumors from seven animals. Histopathology, X-ray, blood profiles, and comprehensive examinations were used for both the diagnosis and the evaluation of tumor statuses before and after treatment. Histopathology results showed an obvious reduction in the cancer grade shortly after the first treatment and a complete regression after the third treatment. Blood tests showed no obvious change in liver and kidney functions. Similarly, X-ray diffraction showed no metastasis after 1 year of treatment. In conclusion, our study suggests the feasibility of applying the gold nanorods-PPTT on natural tumors in dogs and cats without any relapse or toxicity effects after 1 year of treatment.


Subject(s)
Apoptosis , Gold/therapeutic use , Hyperthermia, Induced/methods , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/therapy , Nanotubes/chemistry , Surface Plasmon Resonance/methods , Animals , Cats , Dogs , Female , Gold/chemistry , Humans , MCF-7 Cells , Mice , Neoplasm Recurrence, Local/prevention & control , Phototherapy/methods , Spectroscopy, Near-Infrared
9.
Nanomedicine ; 12(8): 2291-2297, 2016 11.
Article in English | MEDLINE | ID: mdl-27453263

ABSTRACT

Plasmonic photothermal therapy (PPTT) was introduced as a promising treatment of cancer. This work was conducted to evaluate the cytotoxic effect of intratumoral (IT) injection of 75µg gold nanorods (GNRs)/kg of body weight followed by direct exposure to 2 w/cm2 near infra-red laser light for 10min on ablation of mammary tumor in 10 dogs and 6 cats. Complete blood count (CBC), liver and kidney function were checked before the start of treatment and one month after injection of GNRs. Results showed that 62.5% (10/16), 25% (4/16) and 12.5% (2/16) of treated animals showed complete remission, partial remission and no response, respectively. Tumor was relapsed in 4 cases of initially responding animals (25%). Overall survival rate was extended to 315.5±20.5days. GNRs have no toxic effect on blood profile, liver or kidney functions. In conclusion, GNRs can be safely used for treatment of mammary tumors in dogs and cats.


Subject(s)
Gold/administration & dosage , Hyperthermia, Induced , Mammary Neoplasms, Animal/drug therapy , Nanotubes , Phototherapy , Animals , Cats , Dogs
10.
Biomaterials ; 102: 1-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27318931

ABSTRACT

Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis.


Subject(s)
Apoptosis , Gold/therapeutic use , HSP70 Heat-Shock Proteins/metabolism , Neoplasms/therapy , Cell Line, Tumor , Gold/chemistry , Humans , Hyperthermia, Induced/methods , MCF-7 Cells , Nanotubes/chemistry , Nanotubes/ultrastructure , Neoplasms/metabolism , Phototherapy/methods
11.
J Phys Chem B ; 118(5): 1319-26, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24433049

ABSTRACT

The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution.


Subject(s)
Gold/chemistry , Nanotubes/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/chemistry , Contrast Media/therapeutic use , Contrast Media/toxicity , Humans , Infrared Rays , Lasers , Models, Theoretical , Mouth Neoplasms/therapy , Nanotubes/toxicity , Particle Size , Phototherapy , Polyethylene Glycols/chemistry
12.
PLoS One ; 8(10): e76207, 2013.
Article in English | MEDLINE | ID: mdl-24098446

ABSTRACT

Gold nanorods (GNR) within tumor microregions are characterized by their ability to absorb near IR light and emit heat in what is called photoplasmonic effect. Yet, the efficacy of nanoparticles is limited due to intratumoral tissue distribution reasons. In addition, distribution of GNRs to normal tissue might result in non specific toxicity. In the current study, we are assessing the intratumoral and tissue distribution of PEGylated GNRs on the top of its antitumor characteristics when given intravenously or intratumoral to solid tumor bearing mice and coupled with laser photoplasmonic sessions. PEGylated GNRs with a longitudinal size of less than 100 nm were prepared with aspect ratio of 4.6 showing strong surface plasmon absorption at wavelength 800 nm. Pharmacokinetics of GNR after single I.V. administration (0.1 mg/kg) showed very short systemic circulating time (less than 3 h). On the other hand, tissue distribution of I.V. GNR (0.1 mg/kg) to normal animals showed preferential deposition in spleen tissue. Repeated administration of I.V. GNR resulted in preferential accumulation in both liver and spleen tissues. In addition, I.V. administration of GNR to Ehrlich carcinoma tumor bearing mice resulted in similar tissue distribution; tumor accumulation and anti-tumor effect compared to intratumoral administration. In conclusion, the concentration of GNR achieved within tumors microregions after I.V. administration was comparable to I.T. administration and sufficient to elicit tumoral growth arrest when coupled with laser-aided photoplasmonic treatment.


Subject(s)
Carcinoma, Ehrlich Tumor/metabolism , Gold , Nanotubes , Administration, Intravenous , Animals , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/therapy , Disease Models, Animal , Female , Gold/chemistry , Hyperthermia, Induced , Low-Level Light Therapy , Male , Mice , Nanotubes/chemistry , Nanotubes/ultrastructure , Polyethylene Glycols/chemistry , Tissue Distribution , Tumor Burden
13.
Acc Chem Res ; 45(11): 1854-65, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-22546051

ABSTRACT

Today, 1 in 2 males and 1 in 3 females in the United States will develop cancer at some point during their lifetimes, and 1 in 4 males and 1 in 5 females in the United States will die from the disease. New methods for detection and treatment have dramatically improved cancer care in the United States. However, as improved detection and increasing exposure to carcinogens has led to higher rates of cancer incidence, clinicians and researchers have not balanced that increase with a similar decrease in cancer mortality rates. This mismatch highlights a clear and urgent need for increasingly potent and selective methods with which to detect and treat cancers at their earliest stages. Nanotechnology, the use of materials with structural features ranging from 1 to 100 nm in size, has dramatically altered the design, use, and delivery of cancer diagnostic and therapeutic agents. The unique and newly discovered properties of these structures can enhance the specificities with which biomedical agents are delivered, complementing their efficacy or diminishing unintended side effects. Gold (and silver) nanotechnologies afford a particularly unique set of physiological and optical properties which can be leveraged in applications ranging from in vitro/vivo therapeutics and drug delivery to imaging and diagnostics, surgical guidance, and treatment monitoring. Nanoscale diagnostic and therapeutic agents have been in use since the development of micellar nanocarriers and polymer-drug nanoconjugates in the mid-1950s, liposomes by Bangham and Watkins in the mid-1960s, and the introduction of polymeric nanoparticles by Langer and Folkman in 1976. Since then, nanoscale constructs such as dendrimers, protein nanoconjugates, and inorganic nanoparticles have been developed for the systemic delivery of agents to specific disease sites. Today, more than 20 FDA-approved diagnostic or therapeutic nanotechnologies are in clinical use with roughly 250 others in clinical development. The global market for nano-enabled medical technologies is expected to grow to $70-160 billion by 2015, rivaling the current market share of biologics worldwide. In this Account, we explore the emerging applications of noble metal nanotechnologies in cancer diagnostics and therapeutics carried out by our group and by others. Many of the novel biomedical properties associated with gold and silver nanoparticles arise from confinement effects: (i) the confinement of photons within the particle which can lead to dramatic electromagnetic scattering and absorption (useful in sensing and heating applications, respectively); (ii) the confinement of molecules around the nanoparticle (useful in drug delivery); and (iii) the cellular/subcellular confinement of particles within malignant cells (such as selective, nuclear-targeted cytotoxic DNA damage by gold nanoparticles). We then describe how these confinement effects relate to specific aspects of diagnosis and treatment such as (i) laser photothermal therapy, optical scattering microscopy, and spectroscopic detection, (ii) drug targeting and delivery, and (iii) the ability of these structures to act as intrinsic therapeutic agents which can selectively perturb/inhibit cellular functions such as division. We intend to provide the reader with a unique physical and chemical perspective on both the design and application of these technologies in cancer diagnostics and therapeutics. We also suggest a framework for approaching future research in the field.


Subject(s)
Diagnostic Imaging/methods , Metal Nanoparticles/therapeutic use , Nanotechnology/methods , Neoplasms/diagnosis , Neoplasms/drug therapy , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Drug Delivery Systems/methods , Female , Gold , Humans , Male , Nanoparticles/therapeutic use , Neoplasms/pathology , Phototherapy/methods , Silver
14.
J Biomed Opt ; 15(5): 058002, 2010.
Article in English | MEDLINE | ID: mdl-21054128

ABSTRACT

We conduct a comparative study on the efficiency and cell death pathways of continuous wave (cw) and nanosecond pulsed laser photothermal cancer therapy using gold nanospheres delivered to either the cytoplasm or nucleus of cancer cells. Cytoplasm localization is achieved using arginine-glycine-aspartate peptide modified gold nanospheres, which target integrin receptors on the cell surface and are subsequently internalized by the cells. Nuclear delivery is achieved by conjugating the gold nanospheres with nuclear localization sequence peptides originating from the simian virus. Photothermal experiments show that cell death can be induced with a single pulse of a nanosecond laser more efficiently than with a cw laser. When the cw laser is applied, gold nanospheres localized in the cytoplasm are more effective in inducing cell destruction than gold nanospheres localized at the nucleus. The opposite effect is observed when the nanosecond pulsed laser is used, suggesting that plasmonic field enhancement of the nonlinear absorption processes occurs at high localization of gold nanospheres at the nucleus. Cell death pathways are further investigated via a standard apoptosis kit to show that the cell death mechanisms depend on the type of laser used. While the cw laser induces cell death via apoptosis, the nanosecond pulsed laser leads to cell necrosis. These studies add mechanistic insight to gold nanoparticle-based photothermal therapy of cancer.


Subject(s)
Gold/therapeutic use , Laser Therapy/methods , Metal Nanoparticles/therapeutic use , Carcinoma, Squamous Cell/therapy , Cell Death/radiation effects , Cell Line, Tumor , Cell Nucleus/radiation effects , Cytoplasm/radiation effects , Humans , Hyperthermia, Induced/methods , In Vitro Techniques , Mouth Neoplasms/therapy , Optical Phenomena
15.
Methods Mol Biol ; 624: 343-57, 2010.
Article in English | MEDLINE | ID: mdl-20217607

ABSTRACT

This chapter describes the application of gold nanorods in biomedical imaging and photothermal therapy. The photothermal properties of gold nanorods are summarized and the synthesis as well as antibody conjugation of gold nanorods is outlined. Biomedical applications of gold nanorods include cancer imaging using their enhanced scattering property and photothermal therapy using their enhanced nonradiative photothermal property.


Subject(s)
Diagnostic Imaging/methods , Gold , Nanomedicine/methods , Nanotubes/chemistry , Neoplasms/diagnosis , Neoplasms/therapy , Phototherapy/methods , Animals , Humans , Optical Phenomena , Temperature
16.
Cancer Lett ; 269(1): 57-66, 2008 Sep 28.
Article in English | MEDLINE | ID: mdl-18541363

ABSTRACT

Plasmonic photothermal therapy (PPTT) is a minimally-invasive oncological treatment strategy in which photon energy is selectively administered and converted into heat sufficient to induce cellular hyperthermia. The present work demonstrates the feasibility of in vivo PPTT treatment of deep-tissue malignancies using easily-prepared plasmonic gold nanorods and a small, portable, inexpensive near-infrared (NIR) laser. Dramatic size decreases in squamous cell carcinoma xenografts were observed for direct (P<0.0001) and intravenous (P<0.0008) administration of pegylated gold nanorods in nu/nu mice. Inhibition of average tumor growth for both delivery methods was observed over a 13-day period, with resorption of >57% of the directly-injected tumors and 25% of the intravenously-treated tumors.


Subject(s)
Carcinoma, Squamous Cell/therapy , Gold/therapeutic use , Hyperthermia, Induced/methods , Nanotubes/chemistry , Animals , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Female , Humans , Mice , Spectroscopy, Near-Infrared , Surface Plasmon Resonance
17.
Lasers Med Sci ; 23(3): 217-28, 2008 Jul.
Article in English | MEDLINE | ID: mdl-17674122

ABSTRACT

The use of lasers, over the past few decades, has emerged to be highly promising for cancer therapy modalities, most commonly the photothermal therapy method, which employs light absorbing dyes for achieving the photothermal damage of tumors, and the photodynamic therapy, which employs chemical photosensitizers that generate singlet oxygen that is capable of tumor destruction. However, recent advances in the field of nanoscience have seen the emergence of noble metal nanostructures with unique photophysical properties, well suited for applications in cancer phototherapy. Noble metal nanoparticles, on account of the phenomenon of surface plasmon resonance, possess strongly enhanced visible and near-infrared light absorption, several orders of magnitude more intense compared to conventional laser phototherapy agents. The use of plasmonic nanoparticles as highly enhanced photoabsorbing agents has thus introduced a much more selective and efficient cancer therapy strategy, viz. plasmonic photothermal therapy (PPTT). The synthetic tunability of the optothermal properties and the bio-targeting abilities of the plasmonic gold nanostructures make the PPTT method furthermore promising. In this review, we discuss the development of the PPTT method with special emphasis on the recent in vitro and in vivo success using gold nanospheres coupled with visible lasers and gold nanorods and silica-gold nanoshells coupled with near-infrared lasers.


Subject(s)
Gold/therapeutic use , Hyperthermia, Induced/methods , Metal Nanoparticles/therapeutic use , Neoplasms/therapy , Surface Plasmon Resonance/methods , Absorption , Animals , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Scattering, Radiation
18.
Lasers Surg Med ; 39(9): 747-53, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17960762

ABSTRACT

BACKGROUND AND OBJECTIVE: Laser photothermal therapy (PTT) is practiced at the moment using short laser pulses. The use of plasmonic nanoparticles as contrast agents can decrease the laser energy by using the optical property of the nanoparticles and improve the tumor selectivity by the molecular probes on the particle surface. In this study, we aim at selective and efficient PTT by exploiting the nonlinear optical properties of aggregated spherical gold nanoparticles conjugated to anti-epidermal growth factor receptor (anti-EGFR) antibodies using short NIR laser pulses. STUDY DESIGN/MATERIALS AND METHODS: Spherical gold nanoparticles are synthesized and conjugated to anti-EGFR antibodies to specifically target HSC oral cancer cells. The nanoparticles are characterized by micro-absorption spectra and dark field light scattering imaging. Photothermal destructions of control and nanoparticle treated cancer cells are carried out with a femtosecond Ti:Sapphire laser at 800 nm with a pulse duration of 100 femtoseconds and repetition rate of 1 kHz. RESULTS: The laser power threshold for the photothermal destruction of cells after the nanoparticle treatment is found to be 20 times lower than that required to destroy the cells in the normal PTT, that is, without nanoparticles. The number of destroyed cells is quadratically dependent on the laser power. The number of dead cells shows a nonlinear dependence on the concentration of gold nanoparticles that are specifically targeted to cancer cells. CONCLUSIONS: The energy threshold and selectivity of PTT can greatly benefit from the use of the plasmonic enhanced nonlinear optical processes of spherical gold nanoparticles conjugated to anti-EGFR antibodies. The quadratic dependence of the photothermal efficiency on the pulsed NIR laser power indicates a second harmonic generation or a two photon absorption process. The observed nonlinear dependence on the gold nanoparticle concentration suggests that aggregated nanospheres are responsible for the observed enhanced photothermal destruction of the cells.


Subject(s)
Carcinoma, Squamous Cell/therapy , Gold/therapeutic use , Hyperthermia, Induced/methods , Mouth Neoplasms/therapy , Nanostructures/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Contrast Media , ErbB Receptors/biosynthesis , Gold/chemistry , Humans , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Scattering, Radiation , Spectroscopy, Near-Infrared , Surface Plasmon Resonance
19.
Photochem Photobiol ; 82(2): 412-7, 2006.
Article in English | MEDLINE | ID: mdl-16613493

ABSTRACT

Laser photothermal therapy of cancer with the use of gold nanoparticles immunotargeted to molecular markers on the cell surface has been shown to be an effective modality to selectively kill cancer cells at much lower laser powers than those needed for healthy cells. To elucidate the minimum light dosimetry required to induce cell death, photothermal destruction of two cancerous cell lines and a noncancerous cell line treated with antiepidermal growth factor receptor (anti-EGFR) antibody-conjugated gold nanoparticles is studied, and a numerical heat transport model is used to estimate the local temperature rise within the cells as a result of the laser heating of the gold nanoparticles. It is found that cell samples with higher nanoparticle loading require a lower incident laser power to achieve a certain temperature rise. Numerically estimated temperatures of 70-80 degrees C achieved by heating the gold particles agree well with the measured threshold temperature for destruction of the cell lines by oven heating and those measured in an earlier nanoshell method. Specific binding of anti-EGFR antibody to cancerous cells overexpressing EGFR selectively increases the gold nanoparticle loading within cancerous cells, thus allowing the cancerous cells to be destroyed at lower laser power thresholds than needed for the noncancerous cells. In addition, photothermal therapy using gold nanoparticles requires lower laser power thresholds than therapies using conventional dyes due to the much higher absorption coefficient of the gold nanoparticles.


Subject(s)
ErbB Receptors/metabolism , Gold/therapeutic use , Hyperthermia, Induced/methods , Nanostructures/chemistry , Neoplasms/drug therapy , Antigen-Antibody Complex/analysis , Antigen-Antibody Complex/ultrastructure , Cell Line/ultrastructure , Cell Line, Tumor/ultrastructure , ErbB Receptors/immunology , Gold/chemistry , Humans , Lasers , Neoplasms/pathology , Temperature
20.
J Am Chem Soc ; 128(6): 2115-20, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16464114

ABSTRACT

Due to strong electric fields at the surface, the absorption and scattering of electromagnetic radiation by noble metal nanoparticles are strongly enhanced. These unique properties provide the potential of designing novel optically active reagents for simultaneous molecular imaging and photothermal cancer therapy. It is desirable to use agents that are active in the near-infrared (NIR) region of the radiation spectrum to minimize the light extinction by intrinsic chromophores in native tissue. Gold nanorods with suitable aspect ratios (length divided by width) can absorb and scatter strongly in the NIR region (650-900 nm). In the present work, we provide an in vitro demonstration of gold nanorods as novel contrast agents for both molecular imaging and photothermal cancer therapy. Nanorods are synthesized and conjugated to anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies and incubated in cell cultures with a nonmalignant epithelial cell line (HaCat) and two malignant oral epithelial cell lines (HOC 313 clone 8 and HSC 3). The anti-EGFR antibody-conjugated nanorods bind specifically to the surface of the malignant-type cells with a much higher affinity due to the overexpressed EGFR on the cytoplasmic membrane of the malignant cells. As a result of the strongly scattered red light from gold nanorods in dark field, observed using a laboratory microscope, the malignant cells are clearly visualized and diagnosed from the nonmalignant cells. It is found that, after exposure to continuous red laser at 800 nm, malignant cells require about half the laser energy to be photothermally destroyed than the nonmalignant cells. Thus, both efficient cancer cell diagnostics and selective photothermal therapy are realized at the same time.


Subject(s)
Carcinoma, Squamous Cell/therapy , Gold/therapeutic use , Hyperthermia, Induced/methods , Mouth Neoplasms/therapy , Nanostructures/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Contrast Media , ErbB Receptors/biosynthesis , ErbB Receptors/immunology , Gold/chemistry , Humans , Immunotoxins/chemistry , Immunotoxins/pharmacology , Keratinocytes/cytology , Light , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Scattering, Radiation , Spectroscopy, Near-Infrared/methods , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL