Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561720

ABSTRACT

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Subject(s)
Cichlids , Fish Diseases , Polyethylene Glycols , Polyethyleneimine , Pseudomonas putida , Titanium , Animals , Antioxidants , Nanogels , Diet , Dietary Supplements , Animal Feed/analysis , Fish Diseases/drug therapy , Fish Diseases/microbiology
2.
Fish Physiol Biochem ; 50(1): 97-126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36607534

ABSTRACT

Astaxanthin is the main natural C40 carotenoid used worldwide in the aquaculture industry. It normally occurs in red yeast Phaffia rhodozyma and green alga Haematococcus pluvialis and a variety of aquatic sea creatures, such as trout, salmon, and shrimp. Numerous biological functions reported its antioxidant and anti-inflammatory activities since astaxanthin possesses the highest oxygen radical absorbance capacity (ORAC) and is considered to be over 500 more times effective than vitamin E and other carotenoids such as lutein and lycopene. Thus, synthetic and natural sources of astaxanthin have a commanding influence on industry trends, causing a wave in the world nutraceutical market of the encapsulated product. In vitro and in vivo studies have associated astaxanthin's unique molecular features with various health benefits, including immunomodulatory, photoprotective, and antioxidant properties, providing its chemotherapeutic potential for improving stress tolerance, disease resistance, growth performance, survival, and improved egg quality in farmed fish and crustaceans without exhibiting any cytotoxic effects. Moreover, the most evident effect is the pigmentation merit, where astaxanthin is supplemented in formulated diets to ameliorate the variegation of aquatic species and eventually product quality. Hence, carotenoid astaxanthin could be used as a curative supplement for farmed fish, since it is regarded as an ecologically friendly functional feed additive in the aquaculture industry. In this review, the currently available scientific literature regarding the most significant benefits of astaxanthin is discussed, with a particular focus on potential mechanisms of action responsible for its biological activities.


Subject(s)
Antioxidants , Carotenoids , Animals , Antioxidants/pharmacology , Carotenoids/pharmacology , Xanthophylls/pharmacology , Aquaculture
3.
Biomed Pharmacother ; 170: 116080, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147737

ABSTRACT

The current study aimed to explore the possible prophylactic and therapeutic effect of Nigella sativa L. oil (NSO) against disruption of endocrine signals and injuries in the thyroid gland, ovary, and uterine tissues induced by sodium fluoride (NaF). Twenty-eight mature female Wistar rats were randomly allocated into four experimental groups (n = 7/group) as follows: control group; NaF group, orally received NaF (20 mg/kg b.wt.) daily; NSO/NaF, orally received NSO (300 mg/kg b.wt.) two weeks before being given NaF and continued throughout the experiment; and NSO+NaF group orally received NSO concurrently with NaF. Our results indicated that NSO restored hormonal balance and suppressed oxidative damage and inflammation. Moreover, the levels of triiodothyronine, thyroxine, thyroid peroxidase, estrogen (E2), progesterone, follicle-stimulating hormone, and luteinizing hormone were elevated, while prostaglandins F2-α and cortisol levels were decreased in NSO treated groups compared to NaF-intoxicated rats. As well, NSO significantly boosted levels of antioxidant molecules, and lowered lipid peroxidation of examined tissues, unlike NaF-treated group. NSO also up-regulated antioxidant enzymes, anti-apoptotic protein, zona pellucida sperm-binding protein, bone morphogenetic protein, and thyroid stimulating hormone, conversely down-regulated inflammatory cytokines, apoptotic proteins, estrogen receptor-α, estrogen receptor-ß, and thyroid stimulating hormone receptors compared to NaF-intoxicated group. Additionally, NSO ameliorated tissue damage of the thyroid gland, ovary, and uterus induced by NaF. -Overall, the prophylactic group (NSO/NaF) performed better antioxidant and anti-inflammatory activities than the treated group almost in all examined tissues, which is reflected by the improvement in the structure of the thyroid, ovarian, and uterine tissues.


Subject(s)
Nigella sativa , Thyroid Gland , Rats , Female , Male , Animals , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/metabolism , Ovary , Sodium Fluoride/toxicity , Sodium Fluoride/metabolism , Plant Oils/pharmacology , Oxidative Stress , Uterus/metabolism , Receptors, Estrogen/metabolism , Seeds
4.
Aquat Toxicol ; 265: 106738, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922777

ABSTRACT

This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κß), transforming growth factor-beta (TGF-ß), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1ß and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.


Subject(s)
Boswellia , Cichlids , Fish Diseases , Frankincense , Fungicides, Industrial , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Fungicides, Industrial/toxicity , Boswellia/metabolism , Cichlids/metabolism , Frankincense/metabolism , Water Pollutants, Chemical/toxicity , Diet/veterinary , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Dietary Supplements/analysis , Animal Feed/analysis , Fish Diseases/chemically induced
5.
Acta Parasitol ; 68(1): 32-41, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36348178

ABSTRACT

PURPOSE: Cryptosporidium parvum is a protozoan parasite infecting most mammalian hosts and causing major health issues. The present study investigated the efficacy of ginger (Zingiber officinale), garlic (Allium sativum), and pomegranate (Punica granatum) peel extracts on the development and progression of experimental cryptosporidiosis in mice. METHODS: Eighty-two mice were assigned to 6 groups: control, infected non-treated, metronidazole (MTZ), ginger, garlic, and pomegranate. The control group topically received no treatments. The infected non-treated group was experimentally infected by 104 C. parvum oocysts per mouse using a stomach tube. The MTZ group was infected with C. parvum oocysts combined with MTZ (50 mg/kg b.w./day). The ginger, garlic, and pomegranate groups daily received different plant extracts at doses of 100 mg/kg BW, 50 mg/kg BW, and 3 gm/kg BW, respectively, followed by infection with C. parvum oocysts. All treatments were applied orally one day after the infection for continuous 30 days. RESULTS: Histopathological and immunohistochemical examinations for P53 and caspase-3 expressions in stomach and spleen tissues showed that MTZ and garlic-treated mice had a more significant effect on infected mice. CONCLUSION: The garlic extract was found to exert a more pronounced effect on infected mice compared with the other treatments as well as to improve health. Garlic extracts, therefore, represent an effective and natural therapeutic alternative for the treatment of cryptosporidiosis with low side effects and without drug resistance.


Subject(s)
Biological Products , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Garlic , Pomegranate , Zingiber officinale , Animals , Mice , Cryptosporidiosis/drug therapy , Spleen , Metronidazole/therapeutic use , Biological Products/pharmacology , Stomach , Mammals
6.
Fish Shellfish Immunol ; 131: 1006-1018, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36379445

ABSTRACT

Two experiments were conducted in this study, using 250 Oreochromis niloticus (O. niloticus) (average weight 30.28 ± 0.27 g). The first experiment was conducted to investigate the 96-h lethal concentration 50 (LC50) of copper chloride (CuCl2) using the probit analysis, seventy fish was divided into seven different concentration of CuCl2 (0, 22, 23, 24, 25, 26, and 27 mg/L), the accurate Cu concentrations were (1.23, 5.36, 6.02, 6.98, 7.05, 7.93, 8.12 mg/L Cu). The second experiment was conducted for investigating the effect of dietary supplementation with thyme (Thymus vulgaris, T. vulgaris) and sweet basil (Ocimum basilicum, O. basilicum) essential oils (TEO and BEO respectively) against sub-lethal Cu exposure (1/10 96-h LC50 of CuCl2). About 180 fish was divided into six groups in triplicate (10 fish/replicate, 30 fish/group). Group 1 (C) was kept as a control group with no Cu exposure and was fed the control basal diet. Group 2 (C-Cu) was fed the control basal diet and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L) as a sub-lethal concentration of Cu, where the realistic Cu concentration was 3.976 mg/L. Group 3 (TEO) and group 4 (BEO) were fed the diets fortified with 1%TEO and BEO, respectively without exposure to Cu. Group 5 (TEO-Cu) and group 6 (BEO-Cu) were fed the diets fortified with 1%TEO and 1%BEO, respectively, and simultaneously exposed to 1/10 of the 96 h LC50 of CuCl2 (2.574 mg/L). The growth and behavioral performance, immunological response and its related gene expression, antioxidant status, stress biomarker indicators, apoptosis biomarkers, and histopathological alteration were investigated. The results of the first experiment showed that the 96-h LC50 of CuCl2 in O. niloticus was 25.740 mg/L with lower and upper confidence limits of 25.152 and 26.356 mg/L, respectively. The results of the second experiment showed that sub-lethal Cu exposure induced growth retardation (lowered final body weight, total weight gain, and specific growth rate %), behavioral abnormalities (slower swimming activity and feeding performance), immunosuppression (lowered nitric oxide, complement-3, lysozyme, total proteins, albumin, and globulin), and lowering the hepatic antioxidant functions (higher MDA, and lower SOD, CAT, and GPx) in the exposed fish. Furthermore, alteration in the immune-related genes expression (down-regulation of IL-10 and TGF-ß and up-regulation of IL-1ß, IL-6, IL-8, and TRL-4), hepato-renal dysfunction (elevated ALT, AST, urea, and creatinine), and high levels of serum stress indicators (cortisol and glucose) were markedly evident. sub-lethal Cu toxicity induced significant up-regulation of apoptosis biomarkers involving, nuclear factor-κß (NF-κß), Bcl-2 Associated X-protein (BAX), meanwhile, the expression of B-cell lymphoma 2 (BCL2) and Proliferating cell nuclear antigen (PCNA) was remarkably down-regulated. In addition, apoptosis was also evident by histopathological investigation of branchial, hepatic, and renal sections. TEO and/or BEO dietary supplementation mitigate the destructive impacts of sub-lethal Cu exposure in O. niloticus, depending on the results of our study, it could be concluded that TEO and BEO with a 1% dietary level could be a promising antioxidant, immunostimulant, anti-stress factors, and anti-apoptosis mediators against heavy metal contaminants (Cu) in O. niloticus, providing a solution to the problem of aquatic bodies pollution, consequently aiding in the development of aquaculture industry.


Subject(s)
Cichlids , Ocimum basilicum , Oils, Volatile , Thymus Plant , Animals , Antioxidants/metabolism , Ocimum basilicum/metabolism , Copper/toxicity , Copper/metabolism , Oils, Volatile/toxicity , Oils, Volatile/metabolism , Cytokines/genetics , Dietary Supplements/analysis , Diet/veterinary , Biomarkers/metabolism , Animal Feed/analysis
7.
Fish Shellfish Immunol ; 128: 425-435, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35985625

ABSTRACT

Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1ß, TGF-ß, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.


Subject(s)
Chitosan , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Nanocomposites , Ocimum basilicum , Albumins/metabolism , Animal Feed/analysis , Animals , Antioxidants/metabolism , Chitosan/metabolism , Diet/veterinary , Dietary Supplements , Food Additives , Gene Expression , Glucose/metabolism , Glutathione Peroxidase/metabolism , Growth Hormone , Head Kidney/metabolism , Interleukin-10/metabolism , Malondialdehyde/metabolism , Muramidase/metabolism , Nitric Oxide/metabolism , Ocimum basilicum/metabolism , Superoxide Dismutase/metabolism , Transforming Growth Factor beta/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Article in English | MEDLINE | ID: mdl-35990819

ABSTRACT

Metabolic syndrome (MS) is a serious health problem associated with an increase in risk factors for hepatic steatosis, which is the most common liver disease today. The goal of this study was to investigate the protective effects of resveratrol against metabolic alterations associated with a high-fat high-fructose diet (HFFD). Thirty-two male rats were randomly divided into four equal groups: control (cont.), metabolic syndrome (MS), resveratrol (Res), and metabolic syndrome treated with resveratrol (MS + Res). Resveratrol was administrated orally at a dose of 30 mg/kg·bw, daily. After 10 weeks, body weight, serum biochemical parameters, hepatic oxidative stress, inflammatory markers, as well as mRNA levels of hepatic genes related to lipid metabolism and insulin signaling were measured. In addition, the liver was examined histopathologically to detect lipid deposition. Increased body weight, hepatic dysfunction, dyslipidemia, hepatic insulin resistance, hepatic oxidative and inflammatory stress conditions, upregulation of mRNA expression level of sterol regulatory element binding protein 1-c (SREBP1-c), and downregulation of mRNA expression levels of peroxisome proliferated activated receptor alpha (PPARα) and insulin receptor substrate-2 (IR-S2) were all observed in the MS rats. Hepatic steatosis was confirmed by hematoxylin and eosin and Oil Red O staining. Administration of resveratrol reduced liver steatosis, oxidative stress, and inflammatory state. Also, it improved lipid profile as well as insulin sensitivity and reverted alterations in hepatic mRNA expression levels of the tested genes. Based on these findings, resveratrol could be proposed as a therapeutic approach for MS prevention.

9.
Antioxidants (Basel) ; 11(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36009213

ABSTRACT

The current perspective is a pioneering trial to assess the efficacy of the dietary supplementation of Alchemilla vulgaris powder (AVP) in the diet of Nile tilapia (Oreochromis niloticus) on growth performance, blood picture, hepatic and renal biomarkers, immune status, and serum and tissue antioxidant capacity and to investigate the resistance against Flavobacterium columnare challenge. Fish (n = 360) were distributed into six groups (three replicates each) and received increasing AVP supplementation levels (0, 2, 4, 6, 8, and 10 g kg-1) for 60 days. Furthermore, fish were exposed to the bacterial challenge of a virulent F. columnare strain and maintained under observation for 12 days. During the observation period, clinical signs and the cumulative mortality percentage were recorded. The results demonstrated that the growth performance, feed conversion ratio, and hematological profile were noticeably enhanced in the AVP-supplemented groups compared to the control. The most promising results of weight gain and feed conversion ratio were recorded in the groups with 6, 8, and 10 g AVP kg-1 diets in a linear regression trend. The levels of hepatorenal function indicators were maintained in a healthy range in the different dietary AVP-supplemented groups. In a dose-dependent manner, fish fed AVP dietary supplements displayed significant augmented serum levels of innate immune indicators (lysozyme, nitric oxide, and complement 3) and antioxidant biomarkers (Catalase (CAT), superoxide dismutase (SOD), total antioxidant (TAC), and reduced glutathione (GSH) with a marked decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels). Likewise, hepatic CAT and SOD activities were significantly improved, and the opposite trend was recorded with hepatic MDA. The highest AVP-supplemented dose (10 g/kg) recorded the highest immune-antioxidant status. Based on the study findings, we highlight the efficacy of AVP as a nutraceutical dietary supplementation for aquaculture to enhance growth, physiological performance, and immune-antioxidant status and as a natural economic antibacterial agent in O. niloticus for sustaining aquaculture. It could be concluded that the dietary supplementation of 10 g AVP/kg enhanced O. niloticus growth, physiological performance, immune-antioxidant status, and resistance against F. columnare.

10.
Metab Brain Dis ; 37(4): 973-988, 2022 04.
Article in English | MEDLINE | ID: mdl-35075502

ABSTRACT

Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1ß, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-ßAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Neurotoxicity Syndromes , Rosmarinus , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants/therapeutic use , Dietary Supplements , Humans , Ibotenic Acid/metabolism , Ibotenic Acid/pharmacology , Ibotenic Acid/therapeutic use , Maze Learning , Neural Stem Cells/metabolism , Neurotoxicity Syndromes/metabolism , Oils, Volatile , Olfactory Bulb , Rats
11.
Aquat Toxicol ; 235: 105828, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33901865

ABSTRACT

Among toxic pollutants, Mercury (Hg) is a toxic heavy metal that induces harmful impacts on aquatic ecosystems directly and human being's health indirectly. This study confirmed the in vitro magnetic potential of magnetite Nano-Particles (Fe3O4 NPs) against waterborne Hg exposure-induced toxicity in Nile tilapia (Oreochromis niloticus). We further evaluate the safety profile of Fe3O4 NPs on fish growth, hemato-biochemical, histological parameters, bioaccumulation in muscles, and economy. Magnetite nanoparticles were characterized, adsorption loading to Hg ions was investigated, and testing different concentrations of Fe3O4 NPs (0.2, 0.4, 0.6, 0.8, and 1.0 mg/L) was applied to determine the highest concentration of adsorption. An in vivo experiment includes 120 fish with an average weight of 26.2 ± 0.26 g were randomly divided into 4 equal groups, each group had three replicates (n = 30 fish/group; 10 fish/ replicate). All groups were fed on a reference basal diet and the experiment was conducted for 30 days. The first group (G1) was allocated as a control. The second group (G2) received 1.0 mg/L aqueous suspension of Fe3O4 NPs. The third group (G3) was exposed to an aqueous solution of Hg ions at a concentration of 0.025 mg/L. Meanwhile, the fourth group (G4) acquired an aqueous suspension composed of a mixture of Hg ions and Fe3O4 NPs as previously mentioned. Throughout the exposure period, the clinical signs, symptoms, and mortalities were recorded. The Hg ions-exposed group induced the following consequences; reduced appetite resulting in reduced growth and less economic efficiency; microcytic hypochromic anemia, leukocytosis, lymphopenia, and neutrophilia; sharp and clear depletion in the immune indicators including lysozymes activity, immunoglobulin M (IgM), and Myeloperoxidase activities (MPO); significant higher levels of ALT, AST, urea, creatinine, and Superoxide dismutase (SOD); histological alterations of gill, hepatic and muscular tissues with strong expression of apoptotic marker (caspase 3); and a higher accumulation of Hg ions in the muscles. Surprisingly, Fe3O4 NPs-supplemented groups exhibited strong adsorption capacity against the Hg ions and mostly removed the Hg ions accumulation in the muscles. Also, the hematological, biochemical, and histological parameters were recovered. Thus, in order to assess the antitoxic role of Fe3O4 NPs against Hg and their safety on O. niloticus, and fill the gap of the research, the current context was investigated to evaluate the promising role of Fe3O4 NPs to prevent Hg-exposure-induced toxicity and protection of fish health, which ascertains essentiality for sustainable development of nanotechnology in the aquatic environment.


Subject(s)
Cichlids/metabolism , Magnetic Iron Oxide Nanoparticles , Mercury/metabolism , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Bioaccumulation , Diet , Dietary Supplements/analysis , Ecosystem , Ferrosoferric Oxide/metabolism , Gills/metabolism , Humans , Liver/metabolism , Muscles/metabolism , Superoxide Dismutase/metabolism
12.
Environ Sci Pollut Res Int ; 28(4): 4558-4572, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32946057

ABSTRACT

5-Fluorouracil (5-FU), a chemotherapeutic drug, has adverse effects on heart and kidney functions. Ficus Carica (fig) and extra virgin olive oil (EVOO) are natural sources which have antioxidant effects. This study investigated the synergistic effects of fig extract and EVOO against cardiac and renal damage induced by 5-FU. Forty rats were equally divided into five groups and treated with physiological saline (control), five intravenous injections of 5-FU (40 mg/kg b.w) (5-FU), fig (1 g/kg b.w/day, orally) with 5-FU (Fig/5-FU), EVOO (7 g/kg b.w/day, orally) with 5-FU (EVOO/5-FU), combined treatment of fig and EVOO with five 5-FU injections (Fig/EVOO/5-FU). After 30 days, blood and tissue samples (Heart and kidney) were collected to be used in the examinations. 5-FU significantly increased serum creatine kinase activity, renal biomarkers, cholesterol, triglycerides, C-reactive protein, tumor necrosis factor-α, and interleukin-1ß as well as cardiac and renal lipid peroxides (malondialdehyde). Meanwhile, serum levels of immunoglobulins, interleukins (IL-10, IL-12), and antioxidants of heart and kidney tissues were significantly decreased in 5-FU group. It also downregulated cardiac and renal Bcl2, and upregulated cardiac troponin and renin gene expressions. As well, histological alterations clarified that 5-FU induced cardiac cell damage, distorted renal corpuscles and tubules, inflammatory cell infiltrations, and severe congestion and hemorrhage in the blood vessels. The treatment with fig and olive oil, especially the combined treatment, modulated the toxic effect of 5-FU on the heart and kidney. Our results revealed that fig extract and EVOO have a powerful antioxidant and many protective effects against cardiac and renal toxicity induced by 5-FU, especially when using fig and EVOO together as a combined treatment.


Subject(s)
Ficus , Animals , Antioxidants , Cytokines , Fluorouracil , Inflammation , Male , Olive Oil , Oxidative Stress , Plant Extracts/pharmacology , Rats
13.
Int J Nanomedicine ; 16: 8447-8464, 2021.
Article in English | MEDLINE | ID: mdl-35002238

ABSTRACT

PURPOSE: Depression is a mood disorder accompanied by intensive molecular and neurochemical alterations. Currently, available antidepressant therapies are not fully effective and are often accompanied by several adverse impacts. Accordingly, the ultimate goal of this investigation was to clarify the possible antidepressant effects of prodigiosins (PDGs) loaded with selenium nanoparticles (PDGs-SeNPs) in chronic unpredictable mild stress (CUMS)-induced depression-like behavior in rats. METHODS: Sixty Sprague Dawley rats were randomly allocated into six groups: control, CUMS group (depression model), fluoxetine (Flu, 10 mg/kg)+CUMS, PDGs+CUMS (300 mg/kg), sodium selenite (Na2SeO3, 400 mg/kg)+CUMS, and PDGs-SeNPs+CUMS (200 mg/kg). All treatments were applied orally for 28 consecutive days. RESULTS: PDGs-SeNPs administration prevented oxidative insults in hippocampal tissue, as demonstrated by decreased oxidant levels (nitric oxide and malondialdehyde) and elevated innate antioxidants (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase), in addition to the upregulated expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in rats exposed to CUMS. Additionally, PDGs-SeNPs administration suppressed neuroinflammation in hippocampal tissue, as determined by the decreased production of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6), increased anti-inflammatory cytokine interleukin-10, and decreased inflammatory mediators (prostaglandin E2, cyclooxygenase-2, and nuclear factor kappa B). Moreover, PDGs-SeNPs administration in stressed rats inhibited neuronal loss and the development of hippocampal apoptosis through enhanced levels of B cell lymphoma 2 and decreased levels of caspase 3 and Bcl-2-associated X protein. Interestingly, PDGs-SeNPs administration improved hormonal levels typically disrupted by CUMS exposure and significantly modulated hippocampal levels of monoamines, brain-derived neurotrophic factor, monoamine oxidase, and acetylcholinesterase activities, in addition to upregulating the immunoreactivity of glial fibrillary acidic protein in CUMS model rats. CONCLUSION: PDGs-SeNPs may serve as a prospective antidepressant candidate due to their potent antioxidant, anti-inflammatory, and neuroprotective potential.


Subject(s)
Nanoparticles , Selenium , Acetylcholinesterase , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Disease Models, Animal , Hippocampus/metabolism , Neuroinflammatory Diseases , Oxidative Stress , Prodigiosin/pharmacology , Prospective Studies , Rats , Rats, Sprague-Dawley , Selenium/pharmacology , Stress, Psychological
14.
Fish Shellfish Immunol ; 96: 213-222, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31821844

ABSTRACT

The present study was carried out to investigate the toxic effects of diazinon on growth performance, hepato-renal function, antioxidant system, innate immune response and comparing the protective role of dietary Chlorella vulgaris (CV) algae and ß-glucan in intoxicated Nile tilapia (Oreochromis niloticus). One hundred and eighty healthy Nile tilapia (20 ± 6.1 g) were distributed equally into four groups; control group, DZN group (0.28 mg/L), DZN-CV group (5% CV) and DZN-ß-glucan group (0.1% ß-glucan) and treatments conducted for about 60 days. The results revealed that administration of DZN significantly increased serum liver enzymes, uric acid, creatinine, and malondialdehyde (MDA) in different tissues. Meanwhile, glutathione (GSH) and superoxide dismutase (SOD) in different tissues, as well as IgM, C-reactive protein (CRP), respiratory burst, lysozyme and bactericidal activities were significantly decreased in DZN group. In addition, expression of TNF-α gene was up-regulated and IL-10 was down-regulated in spleen of DZN intoxicated fish. The treatment of DZN exposed fish with CV and ß-glucan supplemented diets ameliorated hepatic damage and enhanced antioxidant activity and innate immune responses. Furthermore, dietary Chlorella vulgaris and ß-glucan have a potent anti-inflammatory effect as they remarkably increased the expression of IL-10 and decreased TNF-α gene expression. The results also revealed that fish in DZN-CV group had the highest survival rate, final body weight (FBW) and body weight gain (BWG). On the other hand, feed conversion ratio (FCR), specific growth rate (SGR), and protein efficiency ratio (PER) of control, DZN-CV, and DZN- ß-glucan were higher than DZN group. However, the hepatosomatic index (HSI) and spleen-somatic index (SSI) were higher in DZN group than other experimental groups. Overall, CV and ß-glucan can be recommended as a feed supplement to improve immunosuppression, oxidative damage, growth performance and hemato-biochemical alterations induced by DZN toxicity in Nile tilapia.


Subject(s)
Chlorella vulgaris/chemistry , Cichlids/immunology , Diazinon/toxicity , Insecticides/toxicity , Protective Agents/pharmacology , beta-Glucans/pharmacology , Animal Feed/analysis , Animals , Cichlids/growth & development , Diet/veterinary , Dietary Supplements/analysis , Immune Tolerance/drug effects , Kidney/drug effects , Liver/drug effects , Oxidative Stress/drug effects , Protective Agents/administration & dosage , Random Allocation , beta-Glucans/administration & dosage
15.
Fish Shellfish Immunol ; 74: 26-34, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29288050

ABSTRACT

Supplementation of prebiotic carbohydrates can act as a potent immunomodulator and have the efficacy to induce immune-related genes which are involved in host defense. Pure ß-1,4-mannobiose (MNB) showed activation of prophenoloxidase system of shrimp hemocytes in vitro. The resistance of kuruma shrimp Marsupenaeus japonicus against Vibrio parahaemolyticus was examined after the shrimp were fed with 0 (control), 0.02, 0.2, and 2% MNB supplemented diets. The results showed significantly higher survival rates in MNB supplemented shrimp than those of the control one from 2 to 12 days post challenge. In another experiment, the hemocyte count, ROS production, phagocytic, phenoloxidase and bactericidal activities, and expression of immune-related genes were investigated in the control and MNB supplemented groups at day 1, 4, 6, 8 and 11 of the feeding. These immune parameters were significantly enhanced in MNB supplemented groups. Furthermore, the gene expression analysis showed that transcripts of lysozyme, crustin, penaeidin and TNF were significantly up-regulated in hemolymph, lymphoid organs and intestines of MNB treated shrimp. Overall, the results provided evidence that MNB supplementation could improve the immune response and increase shrimp resistance against V. parahaemolyticus infection.


Subject(s)
Dietary Supplements , Immunity, Innate/immunology , Mannans , Penaeidae/immunology , Penaeidae/microbiology , Vibrio parahaemolyticus/physiology , Animal Feed/analysis , Animals , Diet , Mannans/administration & dosage , Mannans/immunology , Penaeidae/metabolism , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL