Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Biomed Pharmacother ; 168: 115626, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852098

ABSTRACT

Healing of wounds is the most deteriorating diabetic experience. Felty germander (Teucrium polium) possesses antioxidant, anti-inflammatory and antimicrobial activities that could accelerate wound healing. Further, nanohydrogels help quicken healing and are ideal biomaterials for drug delivery. In the current study, the chemical profiling, and standardization of T. polium methanolic extract by LC-ESI/TOF/MS/MS and quantitative HPLC-DAD analyses were achieved. The wound healing enhancement in diabetic rats by T. polium nanopreparation (TP-NP) as chitosan nanogel (CS-NG) and investigating the potential mechanisms were investigated. The prepared hydrogel-based TP-NP were characterized with respect to particle size, zeta potential, pH, viscosity, and release of major components. LC-ESI/TOF/MS/MS metabolomic profiling of T. polium revealed the richness of the plant with phenolic compounds, particularly flavonoids. In addition, several terpenoids were detected. Kaempferol content of T. polium was estimated to be 7.85 ± 0.022 mg/ g of dry extract. The wound healing activity of TP-NP was explored in streptozotocin-induced diabetic rats. Diabetic animals were subjected to surgical wounding (1 cm diameter). Then they were divided in 5 groups (10 each). These included Group 1 (untreated control rats), Group 2 received the vehicle of CS-NG; Group 3 (0.5 g of TP prepared in hydrogel), Group 4 (0.5 g of TP-NP), Group 5 represented a positive control treated with 0.5 g of a commercial product. All treatments were applied topically for 21 days. Application of TP-NP on skin wounds of diabetic animals accelerated the healing process as evidenced by epithelium regeneration, formation of granulation tissue followed by epidermal proliferation, along with keratinization as verified by H&E. This was confirmed through enhanced collagen synthesis, as shown by raised hydroxyproline content and Col1A1 gene expression. Moreover, TP-NP significantly alleviated wound oxidative burst and diminished the expressions of inflammatory biomarkers. Meanwhile, TP-NP could enhance the expressions of transforming growth factor beta1 (TGF-ß1), in addition to the angiogenic markers; vascular endothelia growth factor A (VEGFA) and platelet-derived growth factor receptor alpha (PDGFRα). Collectively, chitosan nanogel of T. polium accelerates wound healing in diabetic rats, which could be explained - at least partly - through alleviating oxidative stress and inflammation coupled with pro-angiogenic capabilities.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Teucrium , Rats , Animals , Teucrium/chemistry , Nanogels/therapeutic use , Chitosan/therapeutic use , Plant Extracts/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Wound Healing , Hydrogels/therapeutic use
2.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36355507

ABSTRACT

The current work demonstrates a comparative study between aerial and root parts of Zygophyllum album L. The total phenolic (TPC) and flavonoid content (TFC), in addition to the antioxidant activity, of the crude extracts were investigated, where the aerial parts revealed a higher value overall. By means of UV-VIS and HPLC, rutin and caffeic acid were detected and then quantified as 5.91 and 0.97 mg/g of the plant extract, respectively. Moreover, the biosynthesis of AgNPs utilizing the crude extract of the arial parts and root of Z. album L. and the phenolic extracts was achieved in an attempt to enhance the cytotoxicity of the different plant extracts. The prepared AgNPs formulations were characterized by TEM and zeta potential measurements, which revealed that all of the formulated AgNPs were of a small particle diameter and were highly stable. The mean hydrodynamic particle size ranged from 67.11 to 80.04 nm, while the zeta potential ranged from 29.1 to 38.6 mV. Upon biosynthesis of the AgNPs using the extracts, the cytotoxicity of the tested samples was improved, so the polyphenolics AgNPs of the aerial parts exhibited a potent cytotoxicity against lung A549 and prostate PC-3 cancer cells with IC50 values of 6.1 and 4.36 µg/mL, respectively, compared with Doxorubicin (IC50 values of 6.19 and 5.13 µg/mL, respectively). Regarding the apoptotic activity, polyphenolics AgNPs of the aerial parts induced apoptotic cell death by 4.2-fold in PC-3 and 4.7-fold in A549 cells compared with the untreated control. The mechanism of apoptosis in both cancerous cells appeared to be via the upregulation proapoptotic genes; p53, Bax, caspase 3, 8, and 9, and the downregulation of antiapoptotic gene, Bcl-2. Hence, this formula may serve as a good source for anticancer agents against PC-3 and A549 cells.

3.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142712

ABSTRACT

Chemical investigation of the crude extract of the aerial part of Zygophyllum album L. (Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR (1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS), were utilized to set up the chemical structures of these compounds. The present biological study aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering the role of miRNA-29a. In all groups except for the normal control group, which received a mixture of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg. Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and IL-1ß, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase (CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels compared with the unprotected (positive control) group. The mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated in the testicular tissues of the protected groups compared with the unprotected group. In conclusion, the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.


Subject(s)
MicroRNAs , Saponins , Zygophyllum , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/metabolism , Dimethyl Sulfoxide/pharmacology , Interleukin-6/metabolism , Malondialdehyde/metabolism , Methotrexate/pharmacology , MicroRNAs/metabolism , NF-kappa B/metabolism , Oxidative Stress , Plant Extracts/chemistry , RNA, Messenger/metabolism , Rutin/metabolism , Rutin/pharmacology , Saponins/metabolism , Saponins/pharmacology , Superoxide Dismutase/metabolism , Testis/metabolism , Testosterone/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Water/metabolism , bcl-2-Associated X Protein/metabolism
4.
Antioxidants (Basel) ; 10(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064100

ABSTRACT

Cisplatin is a powerful anti-neoplastic drug that displays multi-organ toxicity, especially to the liver and kidneys. Consumption of phytomedicines is a promising strategy to overcome the side effects of chemotherapy. Carrichtera annua extract proved to possess potent antioxidant activity. Its protective potential against cisplatin-induced hepato-nephrotoxicity was scrutinized. Moreover, a phytochemical study was conducted on C. annua ethyl acetate fraction which led to the isolation of five known phenolic compounds. Structure determination was achieved utilizing 1H- and 13C-NMR spectral analyses. The isolated phytochemicals were trans-ferulic acid (1), kaempferol (2), p-coumaric acid (3), luteolin (4) and quercetin (5). Regarding our biological study, C. annua has improved liver and kidney deteriorated functions caused by cisplatin administration and attenuated the histopathological injury in their tissues. Serum levels of ALT, AST, blood urea nitrogen and creatinine were significantly decreased. C. annua has modulated the oxidative stress mediated by cisplatin as it lowered MDA levels while enhanced reduced-GSH concentrations. More importantly, the plant has alleviated cisplatin triggered inflammation, apoptosis via reduction of INFγ, IL-1ß and caspase-3 production. Moreover, mitochondrial injury has been ameliorated as remarkable increase of mtDNA was noted. Furthermore, the MTT assay proved the combination of cisplatin-C. annua extract led to growth inhibition of MCF-7 cells in a notable additive way. Additionally, we have investigated the binding affinity of C. annua constituents with caspase-3 and IFN-γ proteins using molecular simulation. All the isolated compounds exhibited good binding affinities toward the target proteins where quercetin possessed the most auspicious caspase-3 and IFN-γ inhibition activities. Our results put forward that C. annua is a promising candidate to counteract chemotherapy side effects and the observed activity could be attributed to the synergism between its phytochemicals.

5.
Mar Drugs ; 18(7)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650455

ABSTRACT

Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC50 values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Aromatase Inhibitors/pharmacology , Ergosterol/pharmacology , Magnoliopsida , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Aromatase Inhibitors/chemistry , Ergosterol/chemistry , Humans , Indian Ocean , MCF-7 Cells/drug effects , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry , Structure-Activity Relationship
6.
Article in English | MEDLINE | ID: mdl-31058875

ABSTRACT

Achillea fragrantissima (Forssk.) Sch. Bip. (known as Qaysoom), Echinops spinosus L. (known as Shoak Elgamal) and Artemisia judaica L.(known Shih Baladi) are members of the Asteraceae family known for their traditional medical use in Egypt. The ethanol extracts of these plants were evaluated for their efficacy against a protozoan parasite (Blastocystis). Two different molecular subtypes of Blastocystis were used (ST1 and ST3). Significant growth inhibition of Blastocystis was observed when exposed to both A. judaica (99.3%) and A. fragrantissima (95.6%) with minimal inhibitory concentration (MIC90) at 2000 µg/mL. Under the effect of the extracts, changes in Blastocystis morphology were noted, with the complete destruction of Blastocystis forms after 72 h with the dose of 4000 µg/mL. Different subtypes displayed different responses to the herbal extracts tested. ST1 exhibited significantly different responses to the herbal extracts compared to ST3. A. judaica was selected as the herb of choice considering all of its variables and because of its effective action against Blastocystis. It was then exposed to further fractionation and observation of its effect on ST1 and ST3. Solvent portioned fractions (dichloromethane (DCM), ethyl acetate (EtOAc) and n-hexane) in A. judaica were found to be the potent active fractions against both of the Blastocystis subtypes used.


Subject(s)
Artemisia/chemistry , Blastocystis/drug effects , Plant Extracts/pharmacology , Egypt , Humans , Microbial Sensitivity Tests , Phytotherapy , Plant Extracts/chemistry , Plants, Medicinal , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL