Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
PLoS Genet ; 8(3): e1002568, 2012.
Article in English | MEDLINE | ID: mdl-22438821

ABSTRACT

Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/- mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity.


Subject(s)
Body Mass Index , Carrier Proteins/genetics , Carrier Proteins/metabolism , Feeding Behavior , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Obesity/genetics , Adipose Tissue/metabolism , Adolescent , Animals , Brain Stem/metabolism , Child , Food Deprivation , Gene Expression Regulation/genetics , Genetic Association Studies , Humans , Hypothalamus/metabolism , Male , Membrane Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL