Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 11(18): 2475-9, 2001 Sep 17.
Article in English | MEDLINE | ID: mdl-11549450

ABSTRACT

(2S)-2-(3-Chlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (1b) has been identified as a potent CCR5 antagonist having an IC50=10 nM. Herein, structure-activity relationship studies of non-spiro piperidines are described, which led to the discovery of 4-(N-(alkyl)-N-(benzyloxycarbonyl)amino)piperidine derivatives (3-5) as potent CCR5 antagonists.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Butanes/chemistry , Butanes/chemical synthesis , Butanes/pharmacology , CCR5 Receptor Antagonists , Piperidines/chemistry , Piperidines/pharmacology , Animals , Cells, Cultured , Cricetinae , Drug Design , Drug Evaluation, Preclinical , HIV-1/drug effects , Humans , Inhibitory Concentration 50 , Neutrophils/drug effects , Neutrophils/virology , Structure-Activity Relationship
2.
J Med Chem ; 43(18): 3386-99, 2000 Sep 07.
Article in English | MEDLINE | ID: mdl-10978186

ABSTRACT

Recent results from human clinical trials have established the critical role of HIV protease inhibitors in the treatment of acquired immune-deficiency syndrome (AIDS). However, the emergence of viral resistance, demanding treatment protocols, and adverse side effects have exposed the urgent need for a second generation of HIV protease inhibitors. The continued exploration of our hydroxylaminepentanamide (HAPA) transition-state isostere series of HIV protease inhibitors, which initially resulted in the identification of Crixivan (indinavir sulfate, MK-639, L-735,524), has now yielded MK-944a (L-756,423). This compound is potent, is selective, and competitively inhibits HIV-1 PR with a K(i) value of 0.049 nM. It stops the spread of the HIV(IIIb)-infected MT4 lymphoid cells at 25.0-50.0 nM, even in the presence of alpha(1) acid glycoprotein, human serum albumin, normal human serum, or fetal bovine serum. MK-944a has a longer half-life in several animal models (rats, dogs, and monkeys) than indinavir sulfate and is currently in advanced human clinical trials.


Subject(s)
Antiviral Agents/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , HIV-1/drug effects , Indans/chemical synthesis , Piperazines/chemical synthesis , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Cattle , Cell Culture Techniques , Dogs , Drug Evaluation, Preclinical , Drug Resistance, Microbial , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , HIV Protease Inhibitors/pharmacology , Haplorhini , Humans , Indans/chemistry , Indans/pharmacokinetics , Indans/pharmacology , Male , Piperazines/chemistry , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Binding , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Urinary Calculi/chemically induced , Urinary Calculi/urine
4.
Drug Des Discov ; 10(1): 77-88, 1993.
Article in English | MEDLINE | ID: mdl-8399995

ABSTRACT

A series of glycopeptidemimetics based on the hydroxyethylene Phe-Phe isostere have been synthesized and evaluated for their ability to inhibit the enzyme HIV-1 protease. Incorporation of carbohydrate moieties at the P'2-position and elimination of P'3 amino acid in our lead compound 1, provided inhibitors with only nanomolar potencies (400-800 nM). However, incorporation of a carbohydrate moiety at the P'3-position with branched chain amino acid at the P'2-position, resulted in inhibitors with subnanomolar potencies. Within this series, compound 21 was the most potent inhibitor (IC50 value 0.17 nM). This compound has also shown to block the spread of HIV-1 in T-lymphoid cells at an inhibitor concentration of 200 nM.


Subject(s)
Glycopeptides/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , HIV-1/enzymology , Amino Acid Sequence , Cells, Cultured , Drug Evaluation, Preclinical , Glycopeptides/pharmacology , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Humans , Molecular Sequence Data , Structure-Activity Relationship , T-Lymphocytes/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL