Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br J Clin Pharmacol ; 89(2): 705-713, 2023 02.
Article in English | MEDLINE | ID: mdl-35942921

ABSTRACT

AIMS: To describe the pharmacokinetics (PK) of cefotaxime as pre-emptive treatment in critically ill adult patients, including covariates and to determine the probability of target attainment (PTA) of different dosage regimens for Enterobacterales and Staphylococcus aureus. METHODS: Five samples were drawn during 1 dosage interval in critically ill patients treated with cefotaxime 1 g q6h or q4h. PK parameters were estimated using NONMEM (v7.4.2). The percentage of patients reaching 100% fT>MICECOFF was used to compare different dosage regimens for Enterobacterales and S. aureus. RESULTS: This study included 92 patients (437 samples). The best structural model was a 2-compartment model with a combined error, interindividual variability on clearance, central volume and intercompartmental clearance. Correlations between interindividual variability were included. Clearance increased with higher estimated glomerular filtration rate (eGFR; creatinine clearance) and albumin concentration. For Enterobacterales, 1 g q8h reached 95% PTA and continuous infusion (CI) of 4 g 24 h-1 100% PTA at the highest eGFR and albumin concentration. For S. aureus the predefined target of 95% PTA was not reached with higher eGFR and/or albumin concentrations. CI of 6 g 24 h-1 for S. aureus resulted in a minimum of 99% PTA. CONCLUSION: Cefotaxime PK in critically ill patients was best described by a 2-compartment model with eGFR and albumin concentration as covariates influencing clearance. For Enterobacterales 1 g q8h or CI of 4 g 24 h-1 was adequate for all combinations of eGFR and albumin concentration. For S. aureus CI of 6 g 24 h-1 would be preferred if eGFR and albumin concentration exceed 80 mL min-1 and 40 g L-1 respectively.


Subject(s)
Anti-Bacterial Agents , Cefotaxime , Humans , Adult , Critical Illness/therapy , Staphylococcus aureus , Albumins , Microbial Sensitivity Tests , Monte Carlo Method
2.
BMC Infect Dis ; 22(1): 611, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831793

ABSTRACT

BACKGROUND: Recent studies demonstrated that failure of achieving pharmacodynamic targets of commonly used antibiotics is common in critically ill patients. Therapeutic drug monitoring (TDM) can contribute to optimize the exposure of beta-lactams and ciprofloxacin. While evidence for TDM of these antibiotics is growing, translation into clinical implementation remains limited. Therefore, perceived barriers and facilitators are important for implementing TDM in this population. The primary aim of this study was to identify healthcare professionals' barriers and facilitators for the implementation of TDM of beta-lactams and ciprofloxacin in Dutch intensive care units (ICU). METHODS: We conducted a nationwide cross-sectional online survey among healthcare professionals (HCPs) involved in antibiotic treatment of ICU patients. An adapted version of the Measurement Instrument for Determinants of Innovations was sent out. Items were considered barriers when ≥ 20% of participants responded with a negative answer. If ≥ 80% of the participants responded with a positive answer, the item was considered a facilitator. RESULTS: Sixty-four HCPs completed the survey, of which 14 were from academic hospitals, 25 from general hospitals, and 25 from teaching hospitals. Most participants were hospital pharmacists (59%) or medical specialists (23%). Eleven barriers and four facilitators for implementation of TDM of beta-lactams were identified; 17 barriers for TDM of ciprofloxacin and no facilitators. The most important barriers were a lack of conclusive evidence, organizational support, and low availability of assays. Additional barriers were a lack of consensus on which specific patients to apply TDM and which pharmacodynamic targets to use. Identified facilitators for beta-lactam TDM implementation are low complexity and high task perception, combined with the perception that TDM is important to prevent side effects and to adequately treat infections. Twenty-eight percent of participants reported that flucloxacillin could be analyzed in their hospital. Assay availability of other beta-lactams and ciprofloxacin was lower (3-17%). CONCLUSION: Several barriers were identified that could obstruct the implementation of TDM of beta-lactams and ciprofloxacin in the ICU. In particular, education, clear guidelines, and organizational support should be considered when creating tailored implementation strategies. Finally, evidence of beneficial clinical outcomes on TDM of beta-lactams and ciprofloxacin can enhance further implementation.


Subject(s)
Drug Monitoring , beta-Lactams , Anti-Bacterial Agents/therapeutic use , Ciprofloxacin/therapeutic use , Cross-Sectional Studies , Humans , Intensive Care Units , beta-Lactams/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL