Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Biomed Pharmacother ; 167: 115518, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717534

ABSTRACT

Head and neck squamous cell carcinoma present a high mortality rate. Melatonin has been shown to have oncostatic effects in different types of cancers. However, inconsistent results have been reported for in vivo applications. Consequently, an alternative administration route is needed to improve bioavailability and establish the optimal dosage of melatonin for cancer treatment. On the other hand, the use of patient-derived tumor models has transformed the field of drug research because they reflect the heterogeneity of patient tumor tissues. In the present study, we explore mechanisms for increasing melatonin bioavailability in tumors and investigate its potential as an adjuvant to improve the therapeutic efficacy of cisplatin in the setting of both xenotransplanted cell lines and primary human HNSCC. We analyzed the effect of two different formulations of melatonin administered subcutaneously or intratumorally in Cal-27 and SCC-9 xenografts and in patient-derived xenografts. Melatonin effects on tumor mitochondrial metabolism was also evaluated as well as melatonin actions on tumor cell migration. In contrast to the results obtained with the subcutaneous melatonin, intratumoral injection of melatonin drastically inhibited tumor progression in HNSCC-derived xenografts, as well as in patient-derived xenografts. Interestingly, intratumoral injection of melatonin potentiated CDDP effects, decreasing Cal-27 tumor growth. We demonstrated that melatonin increases ROS production and apoptosis in tumors, targeting mitochondria. Melatonin also reduces migration capacities and metastasis markers. These results illustrate the great clinical potential of intratumoral melatonin treatment and encourage a future clinical trial in cancer patients to establish a proper clinical melatonin treatment.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Melatonin , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Melatonin/pharmacology , Melatonin/therapeutic use , Carcinoma, Squamous Cell/pathology , Heterografts , Injections, Intralesional , Head and Neck Neoplasms/drug therapy , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Line, Tumor , Oxidative Stress
2.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743288

ABSTRACT

Age and age-dependent inflammation are two main risk factors for cardiovascular diseases. Aging can also affect clock gene-related impairments such as chronodisruption and has been linked to a decline in melatonin synthesis and aggravation of the NF-κB/NLRP3 innate immune response known as inflammaging. The molecular drivers of these mechanisms remain unknown. This study investigated the impact of aging and NLRP3 expression on the cardiac circadian system, and the actions of melatonin as a potential therapy to restore daily rhythms by mitigating inflammaging. We analyzed the circadian expression and rhythmicity of clock genes in heart tissue of wild-type and NLRP3-knockout mice at 3, 12, and 24 months of age, with and without melatonin treatment. Our results support that aging, NLRP3 inflammasome, and melatonin affected the cardiac clock genes expression, except for Rev-erbα, which was not influenced by genotype. Aging caused small phase changes in Clock, loss of rhythmicity in Per2 and Rorα, and mesor dampening of Clock, Bmal1, and Per2. NLRP3 inflammasome influenced the acrophase of Clock, Per2, and Rorα. Melatonin restored the acrophase and the rhythm of clock genes affected by age or NLRP3 activation. The administration of melatonin re-established murine cardiac homeostasis by reversing age-associated chronodisruption. Altogether, these results highlight new findings about the effects aging and NLRP3 inflammasome have on clock genes in cardiac tissue, pointing to continuous melatonin as a promising therapy to placate inflammaging and restore circadian rhythm in heart muscle. Additionally, light microscopy analysis showed age-related morphological impairments in cardiomyocytes, which were less severe in mice lacking NLRP3. Melatonin supplementation preserved the structure of cardiac muscle fibers in all experimental groups.


Subject(s)
Inflammasomes , Melatonin , Animals , Circadian Rhythm/physiology , Inflammasomes/genetics , Inflammasomes/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
3.
Antioxidants (Basel) ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34439517

ABSTRACT

To investigate the role of NLRP3 inflammasome in cardiac aging, we evaluate here morphological and ultrastructural age-related changes of cardiac muscles fibers in wild-type and NLRP3-knockout mice, as well as studying the beneficial effect of melatonin therapy. The results clarified the beginning of the cardiac sarcopenia at the age of 12 months, with hypertrophy of cardiac myocytes, increased expression of ß-MHC, appearance of small necrotic fibers, decline of cadiomyocyte number, destruction of mitochondrial cristae, appearance of small-sized residual bodies, and increased apoptotic nuclei ratio. These changes were progressed in the cardiac myocytes of 24 old mice, accompanied by excessive collagen deposition, higher expressions of IL-1α, IL-6, and TNFα, complete mitochondrial vacuolation and damage, myofibrils disorganization, multivesicular bodies formation, and nuclear fragmentation. Interestingly, cardiac myocytes of NLRP3-/- mice showed less detectable age-related changes compared with WT mice. Oral melatonin therapy preserved the normal cardiomyocytes structure, restored cardiomyocytes number, and reduced ß-MHC expression of cardiac hypertrophy. In addition, melatonin recovered mitochondrial architecture, reduced apoptosis and multivesicular bodies' formation, and decreased expressions of ß-MHC, IL-1α, and IL-6. Fewer cardiac sarcopenic changes and highly remarkable protective effects of melatonin treatment detected in aged cardiomyocytes of NLRP3-/- mice compared with aged WT animals, confirming implication of the NLRP3 inflammasome in cardiac aging. Thus, NLRP3 suppression and melatonin therapy may be therapeutic approaches for age-related cardiac sarcopenia.

4.
Antioxidants (Basel) ; 10(4)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801675

ABSTRACT

Muscular aging is a complex process and underlying physiological mechanisms are not fully clear. In recent years, the participation of the NF-kB pathway and the NLRP3 inflammasome in the chronic inflammation process that accompanies the skeletal muscle's aging has been confirmed. microRNAs (miRs) form part of a gene regulatory machinery, and they control numerous biological processes including inflammatory pathways. In this work, we studied the expression of four miRs; three of them are considered as inflammatory-related miRs (miR-21, miR-146a, and miR-223), and miR-483, which is related to the regulation of melatonin synthesis, among other targets. To investigate the changes of miRs expression in muscle along aging, the impact of inflammation, and the role of melatonin in aged skeletal muscle, we used the gastrocnemius muscle of wild type (WT) and NLRP3-knockout (NLRP3-) mice of 3, 12, and 24 months-old, with and without melatonin supplementation. The expression of miRs and pro-caspase-1, caspase-3, pro-IL-1ß, bax, bcl-2, and p53, was investigated by qRT-PCR analysis. Histological examination of the gastrocnemius muscle was also done. The results showed that age increased the expression of miR-21 (p < 0.01), miR-146a, and miR-223 (p < 0.05, for both miRs) in WT mice, whereas the 24-months-old mutant mice revealed decline of miR-21 and miR-223 (p < 0.05), compared to WT age. The lack of NLRP3 inflammasome also improved the skeletal muscle fibers arrangement and reduced the collagen deposits compared with WT muscle during aging. For the first time, we showed that melatonin significantly reduced the expression of miR-21, miR-146a, and miR-223 (p < 0.05 for all ones, and p < 0.01 for miR-21 at 24 months old) in aged WT mice, increased miR-223 in NLRP3- mice (p < 0.05), and induced miR-483 expression in both mice strains, this increase being significant at 24 months of age.

5.
Antioxidants (Basel) ; 10(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919790

ABSTRACT

Metabolic reprogramming, which is characteristic of cancer cells that rapidly adapt to the hypoxic microenvironment and is crucial for tumor growth and metastasis, is recognized as one of the major mechanisms underlying therapeutic resistance. Mitochondria, which are directly involved in metabolic reprogramming, are used to design novel mitochondria-targeted anticancer agents. Despite being targeted by melatonin, the functional role of mitochondria in melatonin's oncostatic activity remains unclear. In this study, we aim to investigate the role of melatonin in mitochondrial metabolism and its functional consequences in head and neck cancer. We analyzed the effects of melatonin on head and neck squamous cell carcinoma (HNSCC) cell lines (Cal-27 and SCC-9), which were treated with 100, 500, and 1500 µM of melatonin for 1, 3, and 5 days, and found a connection between a change of metabolism following melatonin treatment and its effects on mitochondria. Our results demonstrate that melatonin induces a shift to an aerobic mitochondrial metabolism that is associated with changes in mitochondrial morphology, function, fusion, and fission in HNSCC. We found that melatonin increases oxidative phosphorylation (OXPHOS) and inhibits glycolysis in HNSCC, resulting in increased ROS production, apoptosis, and mitophagy, and decreased cell proliferation. Our findings highlight new molecular pathways involved in melatonin's oncostatic activity, suggesting that it could act as an adjuvant agent in a potential therapy for cancer patients. We also found that high doses of melatonin, such as those used in this study for its cytotoxic impact on HNSCC cells, might lead to additional effects through melatonin receptors.

6.
Antioxidants (Basel) ; 9(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260800

ABSTRACT

Aging is a major risk for cardiovascular diseases (CVD). Age-related disorders include oxidative stress, mitochondria dysfunction, and exacerbation of the NF-κB/NLRP3 innate immune response pathways. Some of the molecular mechanisms underlying these processes, however, remain unclear. This study tested the hypothesis that NLRP3 inflammasome plays a role in cardiac aging and melatonin is able to counteract its effects. With the aim of investigating the impact of NLRP3 inflammasome and the actions and target of melatonin in aged myocardium, we analyzed the expression of proteins implied in mitochondria dynamics, autophagy, apoptosis, Nrf2-dependent antioxidant response and mitochondria ultrastructure in heart of wild-type and NLRP3-knockout mice of 3, 12, and 24 months-old, with and without melatonin treatment. Our results showed that the absence of NLRP3 prevented age-related mitochondrial dynamic alterations in cardiac muscle with minimal effects in cardiac autophagy during aging. The deficiency of the inflammasome affected Bax/Bcl2 ratio, but not p53 or caspase 9. The Nrf2-antioxidant pathway was also unaffected by the absence of NLRP3. Furthermore, NLRP3-deficiency prevented the drop in autophagy and mice showed less mitochondrial damage than wild-type animals. Interestingly, melatonin treatment recovered mitochondrial dynamics altered by aging and had few effects on cardiac autophagy. Melatonin supplementation also had an anti-apoptotic action in addition to restoring Nrf2-antioxidant capacity and improving mitochondria ultrastructure altered by aging.

7.
Hum Mol Genet ; 29(19): 3296-3311, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32975579

ABSTRACT

Abnormalities of one carbon, glutathione and sulfide metabolisms have recently emerged as novel pathomechanisms in diseases with mitochondrial dysfunction. However, the mechanisms underlying these abnormalities are not clear. Also, we recently showed that sulfide oxidation is impaired in Coenzyme Q10 (CoQ10) deficiency. This finding leads us to hypothesize that the therapeutic effects of CoQ10, frequently administered to patients with primary or secondary mitochondrial dysfunction, might be due to its function as cofactor for sulfide:quinone oxidoreductase (SQOR), the first enzyme in the sulfide oxidation pathway. Here, using biased and unbiased approaches, we show that supraphysiological levels of CoQ10 induces an increase in the expression of SQOR in skin fibroblasts from control subjects and patients with mutations in Complex I subunits genes or CoQ biosynthetic genes. This increase of SQOR induces the downregulation of the cystathionine ß-synthase and cystathionine γ-lyase, two enzymes of the transsulfuration pathway, the subsequent downregulation of serine biosynthesis and the adaptation of other sulfide linked pathways, such as folate cycle, nucleotides metabolism and glutathione system. These metabolic changes are independent of the presence of sulfur aminoacids, are confirmed in mouse models, and are recapitulated by overexpression of SQOR, further proving that the metabolic effects of CoQ10 supplementation are mediated by the overexpression of SQOR. Our results contribute to a better understanding of how sulfide metabolism is integrated in one carbon metabolism and may explain some of the benefits of CoQ10 supplementation observed in mitochondrial diseases.


Subject(s)
Ataxia/pathology , Carbon/metabolism , Electron Transport Complex I/metabolism , Mitochondria/pathology , Mitochondrial Diseases/pathology , Muscle Weakness/pathology , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Sulfides/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Animals , Ataxia/genetics , Ataxia/metabolism , Electron Transport , Electron Transport Complex I/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Glutathione/metabolism , Humans , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Muscle Weakness/genetics , Muscle Weakness/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Skin/drug effects , Skin/metabolism , Skin/pathology , Transcriptome , Ubiquinone/genetics , Ubiquinone/metabolism , Ubiquinone/pharmacology , Vitamins/pharmacology
8.
Aging (Albany NY) ; 12(13): 12648-12668, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32644943

ABSTRACT

The role of retinoid acid receptor-related orphan receptor alpha (RORα) on male reproductive functions during aging is unclear. Here, we analyze the morphological changes in the testis of both young and aged RORα-deficient mice, with and without melatonin supplementation. Young mutants showed vacuolation, degeneration and pyknosis of spermatogenic epithelium and Sertoli cells. Aged mutants showed atrophy of the seminiferous tubules and absence of mitotic spermatogenic cells. Absence of sperms in many tubules, loss of acrosomal cap, vacuolation and hypertrophy of Sertoli cells were detected in aged mice, with a significant reduction in the number of seminiferous tubules and a significant increase in the number of Leydig cells and telocytes. Repair in seminiferous tubules and interstitial tissues with enhancement of spermatogenesis was observed in melatonin-treated aged mice. Young mutants overexpressed VEGF that was weaker in aged animals and observed only in the spermatocytes, while melatonin increased VEGF expression in spermatocytes and spermatids. Caspase 3 increased in both young and aged mutant mice in all seminiferous tubules and interstitium; caspase 3 immunostaining in seminiferous tubules, however, showed a normal pattern of apoptosis with melatonin supplementation. The present study reports that age-dependent testicular changes in RORα mutant mice were recovered by melatonin treatment.


Subject(s)
Aging/drug effects , Melatonin/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Testis/drug effects , Animals , Apoptosis/drug effects , Dietary Supplements , Male , Melatonin/administration & dosage , Mice , Testis/chemistry , Testis/pathology
9.
Oxid Med Cell Longev ; 2019: 7187128, 2019.
Article in English | MEDLINE | ID: mdl-30944696

ABSTRACT

Head and neck cancer is the sixth leading cancer by incidence worldwide. Unfortunately, drug resistance and relapse are the principal limitations of clinical oncology for many patients, and the failure of conventional treatments is an extremely demoralizing experience. It is therefore crucial to find new therapeutic targets and drugs to enhance the cytotoxic effects of conventional treatments without potentiating or offsetting the adverse effects. Melatonin has oncostatic effects, although the mechanisms involved and doses required remain unclear. The purpose of this study is to determine the precise underlying mitochondrial mechanisms of melatonin, which increase the cytotoxicity of oncological treatments, and also to propose new melatonin treatments in order to alleviate and reverse radio- and chemoresistant processes. We analyzed the effects of melatonin on head and neck squamous cell carcinoma (HNSCC) cell lines (Cal-27 and SCC-9), which were treated with 0.1, 0.5, 1, and 1.5 mM melatonin combined with 8 Gy irradiation or 10 µM cisplatin. Clonogenic and MTT assays, as well as autophagy and apoptosis, involving flow cytometry and western blot, were performed in order to determine the cytotoxic effects of the treatments. Mitochondrial function was evaluated by measuring mitochondrial respiration, mtDNA content (RT-PCR), and mitochondrial mass (NAO). ROS production, antioxidant enzyme activity, and GSH/GSSG levels were analyzed using a fluorometric method. We show that high concentrations of melatonin potentiate the cytotoxic effects of radiotherapy and CDDP in HNSCC, which are associated with increased mitochondrial function in these cells. In HNSCC, melatonin induces intracellular ROS, whose accumulation plays an upstream role in mitochondria-mediated apoptosis and autophagy. Our findings indicate that melatonin, at high concentrations, combined with cisplatin and radiotherapy to improve its effectiveness, is a potential adjuvant agent.


Subject(s)
Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Cisplatin/therapeutic use , Melatonin/therapeutic use , Mitochondria/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Apoptosis , Autophagy , Cisplatin/pharmacology , Humans , Melatonin/pharmacology , Reactive Oxygen Species , Squamous Cell Carcinoma of Head and Neck/pathology
10.
EBioMedicine ; 42: 511-523, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30898651

ABSTRACT

BACKGROUND: The vast majority of mitochondrial disorders have limited the clinical management to palliative care. Rapamycin has emerged as a potential therapeutic drug for mitochondrial diseases since it has shown therapeutic benefits in a few mouse models of mitochondrial disorders. However, the underlying therapeutic mechanism is unclear, the minimal effective dose needs to be defined and whether this therapy can be generally used is unknown. METHODS: We have evaluated whether low and high doses of rapamycin administration may result in therapeutic effects in a mouse model (Coq9R239X) of mitochondrial encephalopathy due to CoQ deficiency. The evaluation involved phenotypic, molecular, image (histopathology and MRI), metabolomics, transcriptomics and bioenergetics analyses. FINDINGS: Low dose of rapamycin induces metabolic changes in liver and transcriptomics modifications in midbrain. The high dose of rapamycin induces further changes in the transcriptomics profile in midbrain due to the general inhibition of mTORC1. However, neither low nor high dose of rapamycin were able to improve the mitochondrial bioenergetics, the brain injuries and the phenotypic characteristics of Coq9R239X mice, resulting in the lack of efficacy for increasing the survival. INTERPRETATION: These results may be due to the lack of microgliosis-derived neuroinflammation, the limitation to induce autophagy, or the need of a functional CoQ-junction. Therefore, the translation of rapamycin therapy into the clinic for patients with mitochondrial disorders requires, at least, the consideration of the particularities of each mitochondrial disease. FUND: Supported by the grants from "Fundación Isabel Gemio - Federación Española de Enfermedades Neuromusculares - Federación FEDER" (TSR-1), the NIH (P01HD080642) and the ERC (Stg-337327).


Subject(s)
Mitochondrial Diseases/drug therapy , Sirolimus/therapeutic use , Animals , Autophagy , Cell Respiration/drug effects , Cell Respiration/genetics , Disease Models, Animal , Gene Expression Profiling , Humans , Metabolomics/methods , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/etiology , Mitochondrial Encephalomyopathies/drug therapy , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/metabolism , Phenotype , Sirolimus/administration & dosage , Sirolimus/adverse effects , Sirolimus/pharmacokinetics , Treatment Outcome , Ubiquinone/analogs & derivatives , Ubiquinone/genetics , Ubiquinone/metabolism
11.
J Gerontol A Biol Sci Med Sci ; 74(11): 1699-1708, 2019 10 04.
Article in English | MEDLINE | ID: mdl-30869745

ABSTRACT

To investigate the role of NLRP3 inflammasome in muscular aging, we evaluated here the morphological and functional markers of sarcopenia in the NLRP3-knockout mice, as well as the beneficial effect of melatonin supplementation. The gastrocnemius muscles of young (3 months), early-aged (12 months), and old-aged (24 months) NLRP3-knockout female mice were examined. Moreover, locomotor activity and apoptosis were assessed. The results revealed early markers of sarcopenia at the age of 12 months, including reduction of lactate, ratio of muscle weight to body weight, muscle fibers number, and mitochondrial number. Increased interstitial tissues, apoptosis, and muscle fibers area, as well as mitochondrial damage were detected, with little muscular activity effects. In the old-aged, these alterations progressed with a reduction in locomotor activity, mitochondrial cristae destruction, nuclear fragmentation, tubular aggregates (TAs) formation, and increased frailty index. Oral melatonin supplementation preserved the normal muscular structure, muscle fibers number, and muscular activity in old age. Melatonin enhanced lactate production, recovered mitochondria, inhibited TAs formation, reduced apoptosis, and normalized frailty index. The fewer sarcopenic changes as well as the highly detectable prophylactic effects of melatonin treatment reported here in the muscle of NLRP3-knockout mice comparing with that previously detected in wild-type mice, confirming NLRP3 inflammasome implication in muscular aging and sarcopenia onset and progression.


Subject(s)
Aging/genetics , Inflammasomes/genetics , Melatonin/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Sarcopenia/genetics , Aging/physiology , Animals , Biopsy, Needle , Female , Gene Expression Regulation , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Muscle Strength/genetics , Muscle Strength/physiology , Sarcopenia/pathology , Sensitivity and Specificity
12.
EMBO Mol Med ; 11(1)2019 01.
Article in English | MEDLINE | ID: mdl-30482867

ABSTRACT

Coenzyme Q (CoQ) deficiency has been associated with primary defects in the CoQ biosynthetic pathway or to secondary events. In some cases, the exogenous CoQ supplementation has limited efficacy. In the Coq9R239X mouse model with fatal mitochondrial encephalopathy due to CoQ deficiency, we have tested the therapeutic potential of ß-resorcylic acid (ß-RA), a structural analog of the CoQ precursor 4-hydroxybenzoic acid and the anti-inflammatory salicylic acid. ß-RA noticeably rescued the phenotypic, morphological, and histopathological signs of the encephalopathy, leading to a significant increase in the survival. Those effects were due to the decrease of the levels of demethoxyubiquinone-9 (DMQ9) and the increase of mitochondrial bioenergetics in peripheral tissues. However, neither CoQ biosynthesis nor mitochondrial function changed in the brain after the therapy, suggesting that some endocrine interactions may induce the reduction of the astrogliosis, spongiosis, and the secondary down-regulation of astrocytes-related neuroinflammatory genes. Because the therapeutic outcomes of ß-RA administration were superior to those after CoQ10 supplementation, its use in the clinic should be considered in CoQ deficiencies.


Subject(s)
Hydroxybenzoates/administration & dosage , Mitochondrial Encephalomyopathies/drug therapy , Mitochondrial Encephalomyopathies/pathology , Neuroprotective Agents/administration & dosage , Ubiquinone/analogs & derivatives , Animals , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Energy Metabolism , Histocytochemistry , Mice , Salicylic Acid/administration & dosage , Survival Analysis , Treatment Outcome , Ubiquinone/analysis , Ubiquinone/deficiency , Ubiquinone/genetics , Ubiquinone/metabolism
13.
J Pineal Res ; 64(3)2018 Apr.
Article in English | MEDLINE | ID: mdl-29247557

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) clearly involves activation of the Akt mammalian target of rapamycin (mTOR) signalling pathway. However, the effectiveness of treatment with the mTOR inhibitor rapamycin is often limited by chemoresistance. Melatonin suppresses neoplastic growth via different mechanisms in a variety of tumours. In this study, we aimed to elucidate the effects of melatonin on rapamycin-induced HNSCC cell death and to identify potential cross-talk pathways. We analysed the dose-dependent effects of melatonin in rapamycin-treated HNSCC cell lines (Cal-27 and SCC-9). These cells were treated with 0.1, 0.5 or 1 mmol/L melatonin combined with 20 nM rapamycin. We further examined the potential synergistic effects of melatonin with rapamycin in Cal-27 xenograft mice. Relationships between inhibition of the mTOR pathway, reactive oxygen species (ROS), and apoptosis and mitophagy reportedly increased the cytotoxic effects of rapamycin in HNSCC. Our results demonstrated that combined treatment with rapamycin and melatonin blocked the negative feedback loop from the specific downstream effector of mTOR activation S6K1 to Akt signalling, which decreased cell viability, proliferation and clonogenic capacity. Interestingly, combined treatment with rapamycin and melatonin-induced changes in mitochondrial function, which were associated with increased ROS production, increasing apoptosis and mitophagy. This led to increase cell death and cellular differentiation. Our data further indicated that melatonin administration reduced rapamycin-associated toxicity to healthy cells. Overall, our findings suggested that melatonin could be used as an adjuvant agent with rapamycin, improving effectiveness while minimizing its side effects.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , Mitophagy/drug effects , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Melatonin/pharmacology , Mice , Mice, Nude , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , Squamous Cell Carcinoma of Head and Neck , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
14.
Int J Sports Med ; 38(14): 1117-1125, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29165732

ABSTRACT

The aim of the study was to evaluate the effect of melatonin supplementation on antioxidant capacity and DNA damage in high intensity interval training (HIIT) athletes. A 2-week randomised, double-blinded, placebo-controlled trial with two groups was conducted. Placebo (PG) and melatonin (MG) (20 mg/d) athletes were monitored over a two-week period of HIIT and strength training. The total antioxidant capacity (TAC) and the glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were analysed in blood samples. DNA damage was measured in isolated lymphocytes by comet assay prior to and immediately after exercise. The supplementation increased plasma melatonin levels in the melatonin-treated group (p<0.05) after two weeks of intervention. Analysis of antioxidant status indicated higher (p<0.05) TAC and GPx in MG than PG post-intervention. No differences were found in SOD enzyme activity. DNA damage was diminished in MG (p<0.05) compared to PG in post-training conditions. Antioxidant status was associated with DNA damage (r=-0.679; p=0.047) in the melatonin-treated athletes. The present study suggest that melatonin supplementation improves antioxidant status and may prove to have beneficial effects preventing DNA damage induced by high intensity training.


Subject(s)
Antioxidants/metabolism , Athletes , DNA Damage , High-Intensity Interval Training , Melatonin/administration & dosage , Adult , Dietary Supplements , Double-Blind Method , Glutathione Peroxidase/blood , Humans , Lymphocytes , Male , Melatonin/blood , Oxidative Stress , Superoxide Dismutase/blood , Young Adult
15.
PLoS One ; 12(4): e0174474, 2017.
Article in English | MEDLINE | ID: mdl-28403142

ABSTRACT

Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-κB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients.


Subject(s)
Intestinal Mucosa/pathology , Intestine, Small/pathology , Melatonin/administration & dosage , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/administration & dosage , Animals , Apoptosis , Drug Evaluation, Preclinical , Gels , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/radiation effects , Male , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Phosphorylation , Oxidative Stress , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Rats, Wistar , Tongue/radiation effects
16.
Appl Physiol Nutr Metab ; 42(7): 700-707, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28192673

ABSTRACT

Previous data showed that the administration of high doses of melatonin improved the circadian system in athletes. Here, we investigated in the same experimental paradigm whether the antioxidant properties of melatonin has also beneficial effects against exercise-induced oxidative stress and muscle damage in athletes. Twenty-four athletes were treated with 100 mg·day-1 of melatonin or placebo 30 min before bedtime during 4 weeks in a randomized double-blind scheme. Exercise intensity was higher during the study that before starting it. Blood samples were collected before and after treatment, and plasma was used for oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), nitrite plus nitrate (NOx), and advanced oxidation protein products (AOPP) determinations. Glutathione (GSH), glutathione disulphide (GSSG) levels, and glutathione peroxidase (GPx) and reductase (GRd) activities, were measured in erythrocytes. Melatonin intake increased ORAC, reduced LPO and NOx levels, and prevented the increase of AOPP, compared to placebo group. Melatonin was also more efficient than placebo in reducing GSSG·GSH-1 and GPx·GRd-1 ratios. Melatonin, but not placebo, reduced creatine kinase, lactate dehydrogenase, creatinine, and total cholesterol levels. Overall, the data reflect a beneficial effect of melatonin treatment in resistance-training athletes, preventing extra- and intracellular oxidative stress induced by exercise, and yielding further skeletal muscle protection against exercise-induced oxidative damage.


Subject(s)
Antioxidants/administration & dosage , Dietary Supplements , Melatonin/administration & dosage , Muscle, Skeletal/drug effects , Oxidation-Reduction/drug effects , Resistance Training , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Athletes , Blood Glucose/metabolism , Cholesterol/blood , Creatine Kinase/blood , Diet , Double-Blind Method , Erythrocytes/drug effects , Erythrocytes/physiology , Glutathione/blood , Glutathione Disulfide/blood , Glutathione Peroxidase/blood , Humans , L-Lactate Dehydrogenase/blood , Lipid Peroxidation/drug effects , Male , Muscle, Skeletal/physiology , Oxidative Stress/drug effects , Triglycerides/blood , Young Adult
17.
Exp Gerontol ; 75: 1-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26656745

ABSTRACT

Aging is associated with an increase in oxidative stress and inflammation. The aging lung is particularly affected since it is continuously exposed to environmental oxidants while antioxidant machinery weakens with age. Melatonin, a free radical scavenger, counteracts inflammation and apoptosis in healthy cells from several tissues. Its effects on the aging lung are, however, not yet fully understood. This study aimed to investigate the effect of chronic administration of melatonin on the expression of inflammation markers (TNF-α, IL-1ß, NFκB2, HO-1) and apoptosis parameters (BAD, BAX, AIF) in the lung tissue of male senescence-accelerated prone mice (SAMP8). In addition, RNA oxidative damage, as the formation of 8-hydroxyguanosine (8-OHG), was also evaluated. Young and old animals, aged 2 and 10 months respectively, were divided into 4 groups: untreated young, untreated old, old mice treated with 1mg/kg/day melatonin, and old animals treated with 10mg/kg/day melatonin. Untreated young and old male senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed. Lungs were collected and immediately frozen in liquid nitrogen. mRNA and protein expressions were measured by RT-PCR and Western blotting, respectively. Levels of 8-OHG were quantified by ELISA. Mean values were analyzed using ANOVA. Old nontreated SAMP8 animals showed increased (p<0.05) mRNA and protein levels of TNF-α, IL-1ß, NFκB2, and HO-1 compared to young mice and SAMR1 mice. Melatonin treatment with either dose reversed the aging-derived inflammation (p<0.05). BAD, BAX and AIF expressions also rose with aging, the effect being counteracted with melatonin (p<0.05). Aging also caused a significant elevation (p<0.05) in SAMP8 8-OHG values. This increase was not observed in animals treated with melatonin (p<0.05). In conclusion, melatonin treatment was able to modulate the inflammatory and apoptosis status of the aging lungs, exerting a protective effect on age-induced damage.


Subject(s)
Aging, Premature/drug therapy , Apoptosis/drug effects , Inflammation Mediators/metabolism , Lung/metabolism , Melatonin/pharmacology , Aging/drug effects , Aging/metabolism , Aging/pathology , Aging, Premature/metabolism , Aging, Premature/pathology , Animals , Biomarkers/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Evaluation, Preclinical/methods , Gene Expression Regulation/drug effects , Male , Melatonin/administration & dosage , Melatonin/therapeutic use , Mice, Mutant Strains , Oxidative Stress/drug effects , Oxidative Stress/physiology
18.
Chronobiol Int ; 32(8): 1125-34, 2015.
Article in English | MEDLINE | ID: mdl-26361788

ABSTRACT

Exercise can induce circadian phase shifts depending on the duration, intensity and frequency. These modifications are of special meaning in athletes during training and competition. Melatonin, which is produced by the pineal gland in a circadian manner, behaves as an endogenous rhythms synchronizer, and it is used as a supplement to promote resynchronization of altered circadian rhythms. In this study, we tested the effect of melatonin administration on the circadian system in athletes. Two groups of athletes were treated with 100 mg day(-1) of melatonin or placebo 30 min before bed for four weeks. Daily rhythm of salivary melatonin was measured before and after melatonin administration. Moreover, circadian variables, including wrist temperature (WT), motor activity and body position rhythmicity, were recorded during seven days before and seven days after melatonin or placebo treatment with the aid of specific sensors placed in the wrist and arm of each athlete. Before treatment, the athletes showed a phase-shift delay of the melatonin circadian rhythm, with an acrophase at 05:00 h. Exercise induced a phase advance of the melatonin rhythm, restoring its acrophase accordingly to the chronotype of the athletes. Melatonin, but not placebo treatment, changed daily waveforms of WT, activity and position. These changes included a one-hour phase advance in the WT rhythm before bedtime, with a longer nocturnal steady state and a smaller reduction when arising at morning than the placebo group. Melatonin, but not placebo, also reduced the nocturnal activity and the activity and position during lunch/nap time. Together, these data reflect the beneficial effect of melatonin to modulate the circadian components of the sleep-wake cycle, improving sleep efficiency.


Subject(s)
Athletes , Body Temperature/drug effects , Circadian Rhythm/drug effects , Melatonin/pharmacology , Sleep/drug effects , Body Temperature/physiology , Circadian Rhythm/physiology , Exercise , Humans , Male , Melatonin/administration & dosage , Pineal Gland/drug effects , Pineal Gland/physiology , Sleep/physiology , Wrist/physiology , Young Adult
19.
Eur J Sport Sci ; 14(8): 830-8, 2014.
Article in English | MEDLINE | ID: mdl-24803271

ABSTRACT

The aim of this study was to investigate whether different phases of training affect oxidative stress and antioxidant defences in professional cyclists. Ten professional cyclists, aged 21.8 ± 2.5 years, were enrolled in the study. They were classified into two groups of five athletes each one with similar nutritional intake excepting for the overload of vitamin C (1000 mg day(-1)) and E (400 mg day(-1)) supplementation in one of them. The cyclists of both groups performed the same exercise design, consisting of hard, tapering and recovery training periods. Total antioxidant capacity (TAC) of the diet, plasma oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), DNA damage (8-OHdG) and erythrocyte glutathione disulfide/glutathione ratio (GSSG:GSH(-1)) were measured. During the intense exercise trainings, the cyclists without vitamin supplements had the TAC of diet significantly lower than the supplemented group. Plasma ORAC, LPO and 8-OHdG were similar in both groups of athletes. Athletes with supplements had a basal LPO:ORAC(-1) ratio lower than that without supplements, but this ratio converged to the same level at the end of the training in both groups of cyclists. Both groups of cyclists showed similar changes in GSSG:GSH(-1) ratio and in GSSG and GSH levels along the study. The data suggest that well-trained athletes with suitable ultra-endurance training volume and intensity do not require antioxidant vitamin supplements to adapt their endogenous antioxidant defenses to exercise-induced ROS.


Subject(s)
Antioxidants/metabolism , Athletes , Bicycling/physiology , Oxidative Stress/physiology , Adult , Ascorbic Acid/blood , Biomarkers/blood , Diet Records , Eating , Glutathione/blood , Humans , Male , Nutritional Status , Oxidation-Reduction , Vitamin E/blood , Young Adult
20.
Biochim Biophys Acta ; 1842(7): 893-901, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24576561

ABSTRACT

Coenzyme Q10 (CoQ10) deficiency (MIM 607426) causes a mitochondrial syndrome with variability in the clinical presentations. Patients with CoQ10 deficiency show inconsistent responses to oral ubiquinone-10 supplementation, with the highest percentage of unsuccessful results in patients with neurological symptoms (encephalopathy, cerebellar ataxia or multisystemic disease). Failure in the ubiquinone-10 treatment may be the result of its poor absorption and bioavailability, which may be improved by using different pharmacological formulations. In a mouse model (Coq9(X/X)) of mitochondrial encephalopathy due to CoQ deficiency, we have evaluated oral supplementation with water-soluble formulations of reduced (ubiquinol-10) and oxidized (ubiquinone-10) forms of CoQ10. Our results show that CoQ10 was increased in all tissues after supplementation with ubiquinone-10 or ubiquinol-10, with the tissue levels of CoQ10 with ubiquinol-10 being higher than with ubiquinone-10. Moreover, only ubiquinol-10 was able to increase the levels of CoQ10 in mitochondria from cerebrum of Coq9(X/X) mice. Consequently, ubiquinol-10 was more efficient than ubiquinone-10 in increasing the animal body weight and CoQ-dependent respiratory chain complex activities, and reducing the vacuolization, astrogliosis and oxidative damage in diencephalon, septum-striatum and, to a lesser extent, in brainstem. These results suggest that water-soluble formulations of ubiquinol-10 may improve the efficacy of CoQ10 therapy in primary and secondary CoQ10 deficiencies, other mitochondrial diseases and neurodegenerative diseases.


Subject(s)
Ataxia/drug therapy , Mitochondria/drug effects , Mitochondrial Diseases/drug therapy , Mitochondrial Encephalomyopathies/drug therapy , Muscle Weakness/drug therapy , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Animals , Brain Diseases/drug therapy , Brain Stem/drug effects , Corpus Striatum/drug effects , Electron Transport/drug effects , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Ubiquinone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL