Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Sci Pollut Res Int ; 29(54): 81804-81829, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35739445

ABSTRACT

The groundwater resources of mining areas have been in a challenging condition in terms of metal pollution and human health. Therefore, this study investigated the concentration of cobalt (Co), molybdenum (Mo), selenium (Se), tin (Sn), and antimony (Sb) in groundwater samples (wells, qanats, and springs) in a heavily contaminated mining district, South Khorasan, Eastern Iran. Human health risk of the studied metals to target groups was assessed, and water quality of the studied groundwater was investigated in the study area. A total of 367 sampling sites (279 wells, 74 qanats, and 14 springs) in South Khorasan Province were selected to collect the groundwater samples from June to July 2020. Sampling was performed thrice for each sampling point, and hydrochemical parameters were evaluated using a portable multiparameter. Inductively coupled plasma mass spectrometry (ICP-MS) was used to detect the metal concentrations. Results showed an order of Se > Mo > Sn > Co > Sb, and hazard index (HI) demonstrated a warning condition for south of South Khorasan (drinking application), southwest of South Khorasan (Irrigation application), and east and center of South Khorasan (drinking-irrigation application). Hydrochemical parameters showed a classification of "Na + K type" and "Mixed Ca-Mg-Cl type" with an overall group of "Na-Cl-HCO3" for sampled waters. Ficklin-Caboi diagram depicted a classification of "near-neutral low metal," and Schoeller diagram classified studied groundwater as "good" for drinking and irrigation consumptions and "Na-Cl" type based on ion balance diagram. Based on the correlation analysis, positive relationships were recorded among EC, TDS, Cl-, Na+, sulfate, Ca2+, salt, total hardness, Mg2+, ammonia, and K+ measured in the water samples. In essence, arid regions of the world greatly rely upon groundwater resources for drinking and irrigation consumptions, and mining districts with a heavy load of active mines can be a serious threat to the groundwater quality and human health.


Subject(s)
Groundwater , Selenium , Trace Elements , Water Pollutants, Chemical , Humans , Trace Elements/analysis , Selenium/analysis , Antimony/analysis , Molybdenum/analysis , Ammonia/analysis , Iran , Tin/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Water Quality , Risk Assessment , Sulfates/analysis , Cobalt/analysis
2.
J Trace Elem Med Biol ; 66: 126758, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33857859

ABSTRACT

BACKGROUND: Selenium has a major role in male reproduction and antioxidative mechanisms. Although deficiency of this element can result in damages to the body's organs, this metalloid can induce deleterious effects in organisms by causing oxidative stress. This study assessed the spermatotoxicity of selenium nanoparticles (SeNPs) in goldfish (Carassius auratus) based on genotoxicity, antioxidant status, sperm quality, and histopathology. METHODS: The fish with an average weight of 70 g (n = 288) were divided into four experimental groups (three replicates) and fed three times a day with SeNPs at different levels of 0, 0.1, 0.5, and 1 mg kg diet for 30 and 60 days. RESULTS: After 30 and 60 days of feeding trial, compared to the control group, spermatocrit percentage markedly decreased at 1 mg kg SeNPs on day 30 as well as at 0.5 and 1 mg kg on day 60 (p < 0.05). Computer-assisted sperm analysis parameters especially VCL, VSL, and VAP decreased in response to SeNPs (p < 0.05). Percentage of fast speed progressive sperm cells was highest in fish fed with 0.1 mg kg SeNPs following the dietary experiment and significantly reduced in a SeNPs dose-dependent manner (p < 0.05). In addition, the levels of Malondialdehyde and Glutathione peroxidase were significantly elevated in seminal plasma of all SeNPs-treated groups (p < 0.05). On day 60, DNA damage of sperm was greatly increased at 1 mg kg SeNPs (p < 0.05). Moreover, the highest percentage of spermatocyte and spermatid were observed at the highest dose of SeNPs while the highest percentage of spermatozoa was recorded at the lowest and moderate SeNPs doses. CONCLUSION: These findings suggested that non-optimal doses of SeNPs could reduce sperm quality, induce oxidative stress, and DNA damage in sperm, and disrupt testis development.


Subject(s)
Antioxidants/toxicity , Nanoparticles/chemistry , Selenium/toxicity , Spermatozoa/drug effects , Animals , Antioxidants/chemistry , Dose-Response Relationship, Drug , Goldfish , Male , Selenium/chemistry , Sperm Motility/drug effects
3.
Environ Sci Pollut Res Int ; 28(20): 26055-26063, 2021 May.
Article in English | MEDLINE | ID: mdl-33483926

ABSTRACT

Silver nanoparticles (AgNPs) are increasingly used in a wide range of products and as a consequence, the environmental concentration will inevitably increase in the near future. Many aquatic organisms have been shown to be sensitive to the toxic effects of silver, including oxidative stress mechanisms. In this study, we assessed the ability of silymarin (Silybum marianum) to counter the oxidative effects of AgNPs in Nile tilapia (Oreochromis niloticus). Fish were fed on the diets supplemented with 50 or 200 mg kg-1 of free or nanoencapsulated silymarin for 50 days. Subsequently, they were exposed via the water to three concentrations (0.05, 0.1, and 0.5 mg L-1) of AgNPs for 24 h, and the effects of this exposure assessed on blood plasma and liver oxidative status. Growth performance and most body indices measured were not affected by any of the experimental diets. There were no effects of free silymarin (FS) or nanoencapsulated silymarin (NS) on levels of plasma aspartate aminotransferase (AST), alanine transaminase (ALT), or on the total protein (TP). In contrast, malondialdehyde (MDA) content, glutathione peroxidase (GPx) activity, and plasma glucose (GLU) were all affected by the high dietary FS and NS treatments compared with controls. Prior to the AgNPs exposure, the levels of SOD and GPx activity were higher and MDA levels lower in the silymarin treatment groups compared to controls. Exposure to AgNPs resulted in a reduction in the levels of GPx and SOD activity and an increase in the level of MDA that was dependent on the exposure concentrations of AgNPs. Based on GPx, MDA, and GLU indices, both forms of silymarin decreased the toxicity of AgNPs, but NS supplementation was the most effective. Thus, we show dietary silymarin supplementation can reduce AgNP toxicity and nanoencapsulation increases its efficacy as an antioxidant.


Subject(s)
Cichlids , Metal Nanoparticles , Silymarin , Animals , Antioxidants , Diet , Dietary Supplements , Oxidative Stress , Silver , Silymarin/pharmacology
4.
Environ Res ; 194: 110611, 2021 03.
Article in English | MEDLINE | ID: mdl-33358875

ABSTRACT

No to less effort has been made to assess the toxicity of silver nanoparticles (AgNPs) to lipid composition in biological systems and also to discover a mitigating agent against their oxidative stress. Hence, this research evaluated the antioxidant capability of quercetin (Qu) against silver nanoparticles (AgNPs) toxicity towards the lipid contents of ovarian, nervous, and hepatic systems as well as skeletal muscles. To this end, zebrafish (n = 180) were assigned into four experimental dietary groups: negative and positive controls, without Qu supplementation; Qu-200, 200 mg Qu per kg diet; and Qu-400, 400 mg Qu per kg diet. At the end of the feeding trial (40 days), the experimental groups, except the negative control, were exposed to sublethal concentration of AgNPs (0.15 mg L-1) for 96 h. As to the liver tissue of the positive and Qu-200 treatments, total polyunsaturated fatty acids (∑PUFA) decreased 3 times, as well as total high unsaturated fatty acids (∑HUFA) reduced about 30% and 50%, respectively. However, the brain ∑HUFA, predominated by DHA, enhanced in Qu-400 treatment. Interestingly, ∑MUFA, ∑PUFA, and ∑HUFA increased in the muscle of all treated groups, especially Qu-200 and Qu-400. The oocyte ∑MUFA content increased in the positive and Qu-200 treatments, whereas ∑HUFA reduced about 25%, 25%, and 20%, respectively, in the positive, Qu-200, and Qu-400 groups. Generally, the findings suggest that unsaturated acyl chains, particularly HUFAs, in the liver tissue and oocyte cell are highly susceptible to peroxidation or degeneration by AgNPs. More broadly, in the context of ecotoxicological risk assessment, the alteration in HUFAs and PUFAs of the liver and oocyte could impact on maternal and offspring health and consequently alter long-term population dynamics of aquatic animals.


Subject(s)
Metal Nanoparticles , Zebrafish , Animals , Brain , Diet , Dietary Supplements , Fatty Acids , Liver , Metal Nanoparticles/toxicity , Muscles , Oocytes , Quercetin/pharmacology , Silver/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL