Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Colloid Interface Sci ; 351(1): 283-7, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20692671

ABSTRACT

Recent research on the flow patterns during the drying of droplets of solutions or suspensions has revealed a characteristic flow of dissolved or suspended material to the droplet periphery to produce the 'coffee ring' phenomenon. This effect was used to make ceramic well-plates by spontaneous manufacturing. Here we demonstrate that when a colloidal droplet dries on a superhydrophobic surface, the effect is rather different. Evaporation from the region adjacent to the three phase line becomes so restricted that the interior flows, and hence the final destination of particles, changes and the characteristic bowl-shape becomes inverted.


Subject(s)
Copper/chemistry , Aluminum Oxide/chemistry , Colloids/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Silicones/chemistry , Solutions , Surface Properties , Water/chemistry
2.
J Comb Chem ; 12(3): 383-92, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20420368

ABSTRACT

We report on the commissioning experimental run of the rapid automated materials synthesis instrument (RAMSI), a combinatorial robot designed to manufacture, clean, and print libraries of nanocrystal precursor solid compositions. The first stage of RAMSI, parallel synthesis, uses a fully automated high throughput continuous hydrothermal (HiTCH) flow reactor for automatic metal salt precursor mixing, hydrothermal flow reaction, and sample slurry collection. The second stage of RAMSI provides integrated automated cleanup, and the third section is a ceramic printing function. Nanocrystal precursor solid ceramics were synthesized from precursor solutions and collected into 50 mL centrifuge tubes where they were cleaned by multiple centrifugation and redispersion cycles (monitored by intelligent scanning turbidimetry) and printed with an automated pipette. Eight unique compositions of a model phosphor library comprising pure nano-Y(OH)(3) and Eu(3+) doped-yttrium hydroxide, Y(OH)(3):Eu(3+) nanocrystal precursor solid were synthesized (with 2 centrifuge tubes' worth collected per composition), processed, and printed in duplicate as 75, 100, and 125 microL dots in a 21.6 ks (6 h) experiment (note: the actual time for synthesis of each sample tube was only 12 min so up to 60 compositions could easily be synthesized in 12 h if one centrifuge tube per composition was collected instead). The Y(OH)(3):Eu(3+) samples were manually placed in a furnace and heat-treated in air for 14.4 ks (4 h) in the temperature range 200-1200 at 100 degrees C intervals (giving a total of 84 samples plus one as-prepared pure Y(OH)(3) sample). The as-prepared and heat-treated ceramic samples were affixed to 4 mm wide hemispherical wells in a custom-made aluminum well-plate and analyzed using a fluorescence spectrometer. When the library was illuminated with a 254 nm light source (and digitally imaged and analyzed), the 3 mol % Eu(3+) sample heat-treated at 1200 degrees C gave the most intense fluorescence (major red peak at 612 nm); however, an identical nanocrystal precursor heat-treated at only 500 degrees C (identified as Y(2)O(3):Eu(3+) after heat treatment) was the brightest phosphor under illumination of the samples heat-treated at or below 1000 degrees C.


Subject(s)
Ceramics/chemical synthesis , Cold Temperature , Combinatorial Chemistry Techniques/methods , Hot Temperature , Nanoparticles/chemistry , Phosphorus/chemistry , Automation , Ceramics/chemistry , Europium/chemistry , Hydrolysis , Luminescence , Microscopy, Electron , Oxides/chemistry , Particle Size , Spectrometry, Fluorescence , Water/chemistry , Yttrium/chemistry
3.
J Comb Chem ; 7(5): 665-72, 2005.
Article in English | MEDLINE | ID: mdl-16153060

ABSTRACT

This paper describes the design, construction, and operation of the London University Search Instrument (LUSI) which was recently commissioned to create and test combinatorial libraries of ceramic compositions. The instrument uses commercially available powders, milled as necessary to create thick-film libraries by ink-jet printing. Multicomponent mixtures are prepared by well plate reformatting of ceramic inks. The library tiles are robotically loaded into a flatbed furnace and, when fired, transferred to a 2-axis high-resolution measurement table fitted with a hot plate where measurements of, for example, optical or electrical properties can be made. Data are transferred to a dedicated high-performance computer. The possibilities for remote interrogation and search steering are discussed.


Subject(s)
Ceramics/chemistry , Combinatorial Chemistry Techniques/instrumentation , Combinatorial Chemistry Techniques/methods , Robotics/instrumentation , Robotics/methods , Aluminum Oxide/chemistry , Time Factors , Titanium/chemistry , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL