Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836615

ABSTRACT

The affinity of specific phenolic compounds (PCs) and capsaicinoids (CAPs) present in three Capsicum annuum varieties (Friariello, Cayenne and Dzuljunska Sipka) to the transient receptor potential vanilloid member 1 (TRPV1) was investigated by integrating an analytic approach for the simultaneous extraction and analysis through high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC/ITMS) and UV detection (HPLC-UV) of PCs and CAPs and structural bioinformatics based on the protein modelling and molecular simulations of protein-ligand docking. Overall, a total of 35 compounds were identified in the different samples and CAPs were quantified. The highest content of total polyphenols was recorded in the pungent Dzuljunska Sipka variety (8.91 ± 0.05 gGAE/Kg DW) while the lowest was found in the non-pungent variety Friariello (3.58 ± 0.02 gGAE/Kg DW). Protein modelling generated for the first time a complete model of the homotetrameric human TRPV1, and it was used for docking simulations with the compounds detected via the analytic approach, as well as with other compounds, as an inhibitor reference. The simulations indicate that different capsaicinoids can interact with the receptor, providing details on the molecular interaction, with similar predicted binding energy values. These results offer new insights into the interaction of capsaicinoids with TRPV1 and their possible actions.


Subject(s)
Capsicum , Humans , Capsicum/chemistry , Capsaicin/pharmacology , Capsaicin/analysis , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Mass Spectrometry , Phenols/pharmacology , Phenols/analysis , Fruit/chemistry
2.
Molecules ; 28(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985442

ABSTRACT

Natural products and plant extracts exhibit many biological activities, including that related to the defense mechanisms against parasites. Many studies have investigated the biological functions of secondary metabolites and reported evidence of antiviral activities. The pandemic emergencies have further increased the interest in finding antiviral agents, and efforts are oriented to investigate possible activities of secondary plant metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection. In this review, we performed a comprehensive analysis of studies through in silico and in vitro investigations, also including in vivo applications and clinical trials, to evaluate the state of knowledge on the antiviral activities of secondary metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection, with a particular focus on natural compounds present in food plants. Although some of the food plant secondary metabolites seem to be useful in the prevention and as a possible therapeutic management against SARS-CoV-2, up to now, no molecules can be used as a potential treatment for COVID-19; however, more research is needed.


Subject(s)
Biological Products , COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Plants, Edible
3.
Sci Rep ; 6: 32516, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27587238

ABSTRACT

We investigated the potential role of apple phenolic compounds in human pathologies by integrating chemical characterization of phenolic compounds in three apple varieties, computational approaches to identify potential protein targets of the compounds, bioinformatics analyses on data from public archive of gene expression data, and functional analyses to hypothesize the effects of the selected compounds in molecular pathways. Starting by the analytic characterization of phenolic compounds in three apple varieties, i.e. Annurca, Red Delicious, and Golden Delicious, we used computational approaches to verify by reverse docking the potential protein targets of the identified compounds. Direct docking validation of the potential protein-ligand interactions has generated a short list of human proteins potentially bound by the apple phenolic compounds. By considering the known chemo-preventive role of apple antioxidants' extracts against some human pathologies, we performed a functional analysis by comparison with experimental gene expression data and interaction networks, obtained from public repositories. The results suggest the hypothesis that chemo-preventive effects of apple extracts in human pathologies, in particular for colorectal cancer, may be the interference with the activity of nucleotide metabolism and methylation enzymes, similarly to some classes of anticancer drugs.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/prevention & control , Malus/chemistry , Neoplasm Proteins/metabolism , Polyphenols/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Chemoprevention , Chromatography, High Pressure Liquid , Computational Biology , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Molecular Docking Simulation , Plant Extracts/therapeutic use , Polyphenols/pharmacology
4.
Future Med Chem ; 8(8): 841-51, 2016 05.
Article in English | MEDLINE | ID: mdl-27173139

ABSTRACT

BACKGROUND: Inhibitors of chymase appear to be interesting compounds to develop drugs for the treatment of cardiovascular diseases. We used a computational approach to screen molecules from ZINC Biogenic Compounds database and to investigate their interactions with the enzyme, in order to predict their binding energy with respect to known ligands and to evaluate their selectivity. RESULTS: Some screened compounds have a predicted binding energy comparable or even better with respect to that of known chymase inhibitors, and they interact with chymase key amino acids responsible for substrate selectivity. Moreover, these compounds appear to be more selective for chymase than to other serine proteases. CONCLUSION: These compounds are promising for the development of a new class of drugs for cardiovascular diseases. [Formula: see text] Pharmacophore model obtained for human chymase (PDB ID: 1T31).


Subject(s)
Chymases/antagonists & inhibitors , Computer Simulation , Drug Evaluation, Preclinical/methods , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Cardiovascular Diseases/drug therapy , Chymases/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL