Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Fundam Clin Pharmacol ; 38(2): 252-261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37735998

ABSTRACT

BACKGROUND: Kaurenol, a diterpene alcohol found in Copaifera langsdorffii Desf. (known as "copaiba"), is historically used in traditional medicine for inflammatory conditions. OBJECTIVES: This study aims to comprehensively assess the potential anti-inflammatory and antinociceptive properties of kaurenol. METHODS: To this end, the following experiments were conducted to evaluated toxicity: locomotor performance and acute toxicity; nociception: acetic acid-induced writhing and formalin-induced antinociception; and anti-inflammatory activity: carrageenan and dextran-induced paw edema at 10, 20, and 40 mg/kg, and measurement of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in macrophages at 1, 3, and 9 µg/ml. RESULTS: Kaurenol did not show significant locomotor changes, acute toxicity, and central analgesic activity in the first phase of formalin test at dosages tested. Kaurenol showed 53%, 64%, 64%, and 58% of inhibition in the acetic acid-induced writhing, second phase of formalin test, carrageenan and dextran-induced paw edema, respectively. CONCLUSION: The anti-inflammatory activity was associated with the regulation of NO release and probably with the regulation of mediators, such as serotonin and prostaglandin in vascular permeability, as well as by being associated with the regulation of IL-6 and IL-10. Kaurenol display anti-inflammatory activity but has no analgesic activity.


Subject(s)
Diterpenes , Interleukin-10 , Humans , Carrageenan , Interleukin-6 , Dextrans/adverse effects , Pain/chemically induced , Pain/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Analgesics/toxicity , Diterpenes/adverse effects , Plant Extracts/pharmacology , Acetic Acid/adverse effects , Edema/chemically induced , Edema/drug therapy
2.
Food Chem Toxicol ; 165: 113189, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35636641

ABSTRACT

The toxicity of D. tripetala fruit extract to mice was investigated using data obtained from lipidomic analyses, comet and Acetylcholinesterase (AChE) assays. Mice (n = 8) were exposed for 30 days via oral gavage to vehicle (5% Tween 80) (negative control), D. tripetala extract (100, 200 and 400 mg/kg) and 40 mg/kg methyl methanesulfonate (MMS) (positive control). The profile of compounds in the fruit extract was analyzed using gas chromatography-mass spectrometry. Out of the total of 32 compounds identified, considerable amount of established insecticidal compounds such as 2-phenylnitroethane, cis-vaccenic acid, linalool and linoleic acid were detected. Fruit extract did not induce DNA damage relative to negative control. Percentage gain in body weights differed significantly across the four weeks. Significantly highest and lowest brain AChE activity was observed in animals exposed to 200 and 400 mg/kg D. tripetala, respectively. Fruit extract modulated the brain phospholipid profile due to significant fold changes of 48 lipid species out of the total of 280 lipid species. High number of differentially expressed phosphatidylcholine (PC) species and significant levels of phosphatidylethanolamine (PE) at 400 mg/kg suggests that activation of inflammation and methylation pathways are the most plausible mechanisms of D. tripetala toxicity to mouse brain tissue.


Subject(s)
Fruit , Piper nigrum , Acetylcholinesterase , Animals , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/toxicity , DNA Damage , Fruit/chemistry , Mice , Phospholipids/analysis , Plant Extracts/chemistry
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165914, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32768678

ABSTRACT

Chagas disease, triggered by the flagellate protozoan Trypanosoma cruzi (T. cruzi) plays a potentially threat to historically non-endemic areas. Considerable evidence established that the immuno-endocrine balance could deeply influence the experimental T. cruzi progression inside the host's body. A high-resolution multiple reaction monitoring approach (MRMHR) was used to study the influence of melatonin on adrenal and plasma steroidal hormones profile of T. cruzi infected Wistar rats. Young (5 weeks) and middle-aged (18 months) male Wistar rats received melatonin (5 mg/Kg, orally) during the acute Chagas disease. Corticosterone, 11-dehydrocorticosterone (11-DHC), cortisol, cortisone, aldosterone, progesterone and melatonin concentration were evaluated. Interleukin-1 alpha and ß (IL-1α and ß), IL-6 and transforming growth factor beta (TGF-ß) were also analyzed. Our results revealed an increased production of corticosterone, cortisone, cortisol and aldosterone in middle-aged control animals, thus confirming the aging effects on the steroidal hormone profile. Serum melatonin levels were reduced with age and predominantly higher in young and middle-aged infected rats. Melatonin treatment reduced the corticosterone, 11-DHC, cortisol, cortisone, aldosterone and progesterone in response to T. cruzi infection. Decreased IL-1 α and ß concentrations were also found in melatonin treated middle-aged infected animals. Melatonin treated middle-aged control rats displayed reduced concentrations of TGF-ß. Melatonin levels were significantly higher in all middle-aged rats treated animals. Reduced percentages of early and late thymocyte apoptosis was found for young and middle-aged melatonin supplemented rats. Finally, our results show a link between the therapeutic and biological effects of melatonin controlling steroidal hormones pathways as well as inflammatory mediators.


Subject(s)
Cytokines/blood , Melatonin/blood , Aging/blood , Aging/metabolism , Aldosterone/blood , Animals , Apoptosis/drug effects , Corticosterone/blood , Cortisone/blood , Interleukin-1alpha/blood , Interleukin-1beta/blood , Male , Rats , Rats, Wistar , Tandem Mass Spectrometry , Thymocytes/drug effects , Thymocytes/metabolism , Trypanosoma cruzi/pathogenicity
4.
J Ethnopharmacol ; 261: 113150, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32730887

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia argentea Mart. & Zucc. (Combretaceae), popularly known as "capitão do campo", is native from the Brazilian cerrado, which is used in folk medicine to treat inflammatory diseases. AIM OF THE STUDY: We aimed to investigate the anti-inflammatory effects, toxicity and mechanisms of action regarding the use of the hydroalcoholic extract of T. argentea bark. MATERIALS AND METHODS: Toxicity was determinate in vitro using the macrophage lineage J774.1 without LPS. Cells were treated with 0.5; 2; 8; 32 and 125 µg/mL of the plant extract. Cell viability was assessed by MTT colorimetric assay. The production of nitrite and cytokines was also determined in the supernatants. A NF-κB reporter assay using RAW macrophages was employed to elucidate the impact of the plant extract on the expression of such molecule. In mice, toxicity was assessed by orally given an intermediate to high concentration of the plant extract on a single dose (1000 or 5000 mg/kg) or low and intermediate doses (300 or 1000 mg/kg) twice daily for 14 days. Blood samples were collected for biochemical analysis. The anti-inflammatory activity was assessed using the air-pouch model with or without pre-inoculation with the inflammatory stimuli LPS (0.5 µg/mL), followed by treatment with plant extract at 5, 60 or 300 mg/kg administered in the air pouch (subcutaneous injection). After 4 h, mice were euthanized and the air pouches washed with 2 mL heparinized PBS (10 IU/mL). Then, the local production in the air pouch wash of cytokines, total proteins and leukocytes was assessed. RESULTS: No signals of toxicity were observed either in cells or mice. Regardless the concentration used in vitro, the extract exhibited a significant anti-inflammatory activity, as perceived by the reduction of the inflammatory cytokines IL-1ß, TNF-α and IL-6 and nitrites on cell supernatants. This was concomitant with a downregulation in NF-κB and elevated levels of IL-10. In mice, similar effects were observed, especially when the plant extract was given at 300 mg/kg, inhibiting the release of IL-1ß, TNF-α, IL-6 and proteins, as well as increasing the release of IL-10. CONCLUSIONS: Altogether, our results demonstrated that the hydroalcoholic extract of T. argentea bark has anti-inflammatory activity without inducing toxicity in cells or living animals. This activity seems to be chiefly influenced by a downregulation in NF-κB, inflammatory cytokines and production of nitrite along with augmented concentration of IL-10.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation/prevention & control , Macrophages/drug effects , NF-kappa B/metabolism , Nitric Oxide/metabolism , Plant Bark , Plant Extracts/pharmacology , Terminalia , Animals , Anti-Inflammatory Agents/isolation & purification , Chemotaxis, Leukocyte/drug effects , Disease Models, Animal , Ethanol/chemistry , Female , Inflammation/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Plant Bark/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells , Signal Transduction , Solvents/chemistry , Terminalia/chemistry
5.
J Pain ; 21(7-8): 820-835, 2020.
Article in English | MEDLINE | ID: mdl-31785404

ABSTRACT

Transcutaneous electrical nerve stimulation (TENS) promotes antinociception by activating the descending pain modulation pathway and consequently releasing endogenous analgesic substances. In addition, recent studies have shown that the endocannabinoid system controls pain. Thus, the present study investigated the involvement of the endocannabinoid system in TENS-induced antinociception of cancer pain using a cancer pain model induced by intraplantar (i.pl.) injections of Ehrlich tumor cells in male Swiss mice. Low- and high-frequency TENS was applied for 20 minutes to the mice's paws, and to investigate the involvement of the endocannabinoid system were used the N-(peperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pitazole-3-carboixamide (AM251), a cannabinoid CB1 receptor antagonist and (5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenyl-methylester phosphonofluoridic acid (MAFP), an inhibitor of the endocannabinoid metabolizing enzyme fatty acid amide hydrolase, injected by via i.pl., intrathecal (i.t.), and intradorsolateral periaqueductal gray matter (i.dl.PAG). Furthermore, liquid chromatography-tandem mass spectrometry, western blot, and immunofluorescence assays were used to evaluate the endocannabinoid anandamide levels, cannabinoid CB1 receptor protein levels, and cannabinoid CB1 receptor immunoreactivity, respectively. Low- and high-frequency TENS reduced the mechanical allodynia induced by Ehrlich tumor cells and this effect was reversed by AM251 and potentiated by MAFP at the peripheral and central levels. In addition, TENS increased the endocannabinoid anandamide levels and the cannabinoid CB1 receptor protein levels and immunoreactivity in the paw, spinal cord, and dorsolateral periaqueductal gray matter. These results suggest that low- and high-frequency TENS is effective in controlling cancer pain, and the endocannabinoid system is involved in this effect at both the peripheral and central levels. PERSPECTIVE: TENS is a nonpharmacological strategy that may be used to control cancer pain. Identification of a new mechanism involved in its analgesic effect could lead to the development of clinical studies as well as an increase in its application, lessening the need for pharmacological treatments.


Subject(s)
Cancer Pain/therapy , Cannabinoid Receptor Antagonists/pharmacology , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Hyperalgesia/therapy , Transcutaneous Electric Nerve Stimulation , Animals , Arachidonic Acids/pharmacology , Cancer Pain/metabolism , Cannabinoid Receptor Antagonists/administration & dosage , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Hyperalgesia/metabolism , Male , Mice , Organophosphonates/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165574, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31666208

ABSTRACT

The functions of eicosanoids, a family of potent biologically active lipid mediators, are not restricted to inflammatory responses and they also act as mediators of the pathogenesis process. However, the role of eicosanoids in tuberculosis remains controversial. To investigate the specific role of LTB4 in Mycobacterium tuberculosis (Mtb) infection, we used 5-lipoxygenase-deficient (5-LO-/-) mice and WT (sv129) mice inoculated intranasally with LTB4 (encapsulated in PLGA microspheres). We showed that deficiency of the 5-LO pathway was related to resistance to Mtb infection. LTB4 inoculation increased susceptibility to Mtb in 5-LO-/- mice but not in WT mice, resulting in worsening of lung inflammation and tissue damage. In infected WT mice, most supplementary LTB4 was metabolized to the inactive form 12-oxo-LTB4 in the lung. A high amount of PGE2 was detected during Mtb infection, and pharmacological inhibition of COX-2 induced a significant reduction of bacterial load and an improved innate immune response in the lungs, independently of baseline LTB4 levels. COX-2 inhibition with celecoxib significantly reduced PGE2 levels, enhanced IFN-γ production and NO release, and increased macrophage phagocytosis of Mtb. The results suggest that a balance between PGE2/LTB4 is essential in the pathogenesis process of tuberculosis to prevent severe inflammation. Moreover, optimal levels of PGE2 are required to induce an effective innate response in the early phase of Mtb infection. Thus, pharmacological modulation of eicosanoid production may provide an important host-directed therapy in tuberculosis.


Subject(s)
Dinoprostone/metabolism , Eicosanoids/metabolism , Inflammation/metabolism , Leukotriene B4/metabolism , Lipid Metabolism/physiology , Signal Transduction/physiology , Tuberculosis/metabolism , Animals , Arachidonate 5-Lipoxygenase/metabolism , Cells, Cultured , Cyclooxygenase 2/metabolism , Disease Models, Animal , Macrophages/metabolism , Male , Mice
7.
J Pharm Biomed Anal ; 123: 195-204, 2016 May 10.
Article in English | MEDLINE | ID: mdl-26897464

ABSTRACT

The control and treatment of Leishmaniasis, a neglected and infectious disease affecting approximately 12 million people worldwide, are challenging. Leishmania parasites multiply intracellularly within macrophages located in deep skin and in visceral tissues, and the currently employed treatments for this disease are subject to significant drawbacks, such as resistance and toxicity. Thus, the search for new Leishmaniasis treatments is compulsory, and Ocotea duckei Vattimo, a plant-derived product from the biodiverse Brazilian flora, may be a promising new treatment for this disease. In this regard, the aim of this work was to develop and characterize a delivery system based on solid lipid nanoparticles (SLN) that contain the liposoluble lignan fraction (LF) of Ocotea duckei Vattimo, which targets the Leishmania phagolysosome of infected macrophages. LF-loaded SLNs were obtained via the hot microemulsion method, and their physical and chemical properties were comprehensively assessed using PCS, AFM, SEM, FT-IR, DSC, HPLC, kinetic drug release studies, and biological assays. The size of the developed delivery system was 218.85±14.2 nm, its zeta potential was -30 mV and its entrapment efficiency (EE%) was high (the EEs% of YAN [yangambin] and EPI-YAN [epi-yangambin] markers were 94.21±0.40% and 94.20±0.00%, respectively). Microscopy, FT-IR and DSC assays confirmed that the delivery system was nanosized and indicated a core-shell encapsulation model, which corroborated the measured kinetics of drug release. The total in vitro release rates of YAN and EPI-YAN in buffer (with sink conditions attained) were 29.6±8.3% and 34.3±8.9%, respectively, via diffusion through the cellulose acetate membrane of the SLN over a period of 4 h. After 24 h, the release rates of both markers reached approximately 45%, suggesting a sustained pattern of release. Mathematical modeling indicated that both markers, YAN and EPI-YAN, followed matrix diffusion-based release kinetics (Higuchi's model) with an estimated diffusion coefficient (D) of 1.3.10(-6) cm(2)/s. The LF-loaded SLNs were non-toxic to murine macrophages (20-80 µg mL(-1) range) and exerted a prominent anti-leishmanial effect (20 µg mL(-1)). These data suggest this new and well-characterized lipid nanoparticle delivery system safely and effectively kills Leishmania and warrants further clinical investigation.


Subject(s)
Antiparasitic Agents/administration & dosage , Antiparasitic Agents/chemistry , Biological Products/administration & dosage , Biological Products/chemistry , Leishmania/drug effects , Leishmaniasis/drug therapy , Animals , Biological Assay/methods , Brazil , Chemistry, Pharmaceutical/methods , Diffusion , Drug Carriers/chemistry , Drug Delivery Systems/methods , Kinetics , Leishmaniasis/parasitology , Lignans/administration & dosage , Lignans/chemistry , Lipids/administration & dosage , Lipids/chemistry , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Microscopy, Atomic Force/methods , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Ocotea/chemistry , Particle Size , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Skin/parasitology , Spectroscopy, Fourier Transform Infrared/methods
8.
Biomed Res Int ; 2015: 913152, 2015.
Article in English | MEDLINE | ID: mdl-26078969

ABSTRACT

Inflammatory disorders affect many people worldwide, and medicinal plants are used to ameliorate these health problems. This paper reports the antiedematogenic and analgesic evaluation of Copaifera langsdorffii Desf. leaves hydroethanolic extract (Cop) and two of its isolated compounds: quercetin-3-O-α-l-rhamnopyranosyl (quercitrin) and kaempferol-3-O-α-l-rhamnopyranosyl (afzelin). For that, the following experimental protocols were undertaken locomotor performance, writhing induced by acetic acid, antinociceptivity induced by formalin, hot plate latency, paw oedema induced by carrageenan and dextran, and cell migration induced by lipopolysaccharide (LPS), as well as the measurement of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 10 (IL-10) in macrophages. Neither the extract nor the isolated compounds displayed analgesic activity. The obtained results showed that C. langsdorffii extract possesses antiedematogenic properties acting on peripheral sites, whereas quercitrin and afzelin are not involved. Moreover, these properties are not associated with cell migration inhibition, TNF-α, IL-6, or IL-10 regulation.


Subject(s)
Edema/drug therapy , Mannosides/administration & dosage , Pain/drug therapy , Plant Extracts/administration & dosage , Proanthocyanidins/administration & dosage , Quercetin/analogs & derivatives , Animals , Carrageenan/toxicity , Cell Movement/drug effects , Dextrans/toxicity , Edema/chemically induced , Edema/pathology , Fabaceae/chemistry , Formaldehyde/toxicity , Humans , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/pathology , Mannosides/chemistry , Mannosides/isolation & purification , Motor Activity/drug effects , Pain/chemically induced , Plant Extracts/chemistry , Plant Leaves/chemistry , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Quercetin/administration & dosage , Quercetin/chemistry , Quercetin/isolation & purification , Rats , Tumor Necrosis Factor-alpha/metabolism
9.
Mediators Inflamm ; 2013: 863198, 2013.
Article in English | MEDLINE | ID: mdl-24376308

ABSTRACT

Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation.


Subject(s)
Asthma/drug therapy , Ellagic Acid/therapeutic use , Animals , Asthma/immunology , Asthma/pathology , Female , Interleukin-5/analysis , Leukocytes/drug effects , Leukocytes/physiology , Macrophages/immunology , Metaplasia , Mice , Mice, Inbred BALB C , NF-kappa B/analysis , P-Selectin/analysis , Phagocytosis/drug effects , Transcription Factor AP-1/analysis
10.
Mediators Inflamm ; 2013: 164202, 2013.
Article in English | MEDLINE | ID: mdl-23533300

ABSTRACT

Acute lung injury (ALI) is characterized by alveolar edema and uncontrolled neutrophil migration to the lung, and no specific therapy is still available. Ellagic acid, a compound present in several fruits and medicinal plants, has shown anti-inflammatory activity in several experimental disease models. We used the nonlethal acid aspiration model of ALI in mice to determine whether preventive or therapeutic administration of ellagic acid (10 mg/kg; oral route) could interfere with the development or establishment of ALI inflammation. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. In both preventive and therapeutic treatments, ellagic acid reduced the vascular permeability changes and neutrophil recruitment to the bronchoalveolar lavage fluid (BALF) and to lung compared to the vehicle. In addition, the ellagic acid accelerated the resolution for lung neutrophilia. Moreover, ellagic acid reduced the COX-2-induced exacerbation of inflammation. These results were similar to the dexamethasone. However, while the anti-inflammatory effects of dexamethasone treatment were due to the reduced activation of NF- κ B and AP-1, the ellagic acid treatment led to reduced BALF levels of IL-6 and increased levels of IL-10. In addition, dexamethasone treatment reduced IL-1 ß. Together, these findings identify ellagic acid as a potential therapeutic agent for ALI-associated inflammation.


Subject(s)
Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Ellagic Acid/therapeutic use , Hydrochloric Acid/toxicity , Acute Lung Injury/metabolism , Animals , Female , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Mice , Mice, Inbred BALB C
11.
J Ethnopharmacol ; 136(2): 355-62, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21575698

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: T. diversifolia (Hemsl.) A. Gray (Asteraceae) has been used in the traditional medicine in several countries as anti-inflammatory and against other illnesses. It is important to evaluate the anti-inflammatory activity of extracts from the leaves of this species, including an infusion, to identify the main constituents of the extracts, observe their effects and correlate them with the anti-inflammatory activity. MATERIALS AND METHODS: An infusion, a leaf rinse extract (LRE) and a polar extract from the rinsed leaves (PE) were obtained and analysed by HPLC-UV-DAD and infrared spectroscopy. The major compounds of these extracts were quantified. The three obtained extracts were evaluated for their anti-inflammatory activities using the paw oedema and croton oil ear oedema assays in mice. Furthermore, neutrophil migration was measured by evaluating myeloperoxidase activity. RESULTS: The PE consists primarily of chlorogenic acids (CAs) and lacks sesquiterpene lactones (STLs). The LRE is rich in STLs and includes a few flavonoids. The infusion is chemically similar to the PE but also contains very low amounts of STLs. The PE and LRE have better mechanisms of action than non-steroidal anti-inflammatory drugs (NSAIDs). Unlike NSAIDs, both the PE and LRE inhibit oedema and neutrophil migration. The pool of CAs from the PE of T. diversifolia has an additional mechanism of action, and its anti-inflammatory effect was greater than what is described in the literature for this class of compounds using the same evaluation models. The similar chemical compositions observed for the infusion and the PE, contrasted with the different activities observed, suggests the presence of antagonist compounds produced during the extraction procedure (infusion); the infusion did not inhibit oedema, however it inhibited neutrophil migration. It suggests that although the great majority of plants present CAs, the category of anti-inflammatory effect of their extracts depends on a suitable pool of compounds and an absence of antagonists, among other factors. CONCLUSIONS: CAs from T. diversifolia comprise a good pool of anti-inflammatory compounds with better activity mechanisms than NSAIDs, other active compounds from the leaf extracts (STLs and flavonoids) and CAs from other plant sources. Thus, the PE of T. diversifolia has high potential for the development of new anti-inflammatory phytomedicines. The infusion probably contains antagonists, and therefore it can be useful to treat inflammation processes where neutrophil recruitment is involved and oedema is not.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Asteraceae/chemistry , Cyclohexanecarboxylic Acids/therapeutic use , Edema/drug therapy , Inflammation/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Cyclohexanecarboxylic Acids/isolation & purification , Cyclohexanecarboxylic Acids/pharmacology , Indomethacin/pharmacology , Inflammation/immunology , Lactones/pharmacology , Mice , Neutrophil Infiltration/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves , Sesquiterpenes/pharmacology
12.
J Ethnopharmacol ; 112(1): 192-8, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17475425

ABSTRACT

The tea prepared from leaves and thorns of Dasyphyllum brasiliensis (Asteraceae) is used in the traditional medicine in Brazil for the treatment of oral and oropharyngeal diseases. In this study, we investigated the anti-inflammatory activity of this plant. The aqueous crude extract (ACE), the methanol-water (MeOH-H(2)O) fraction obtained by solvent partition and its fractionation products were evaluated for their anti-inflammatory activities on acute peritonitis induced by beta-glucan from the cell walls of Histoplasma capsulatum. The antiedematogenic activity was also tested using the carrageenan-induced paw edema assay in mice. Oral administration of 100 and 300mg/kg of the ACE in mice caused a significant reduction of neutrophil and eosinophil recruitment in the acute peritonitis assay. In addition, ACE at 300mg/kg inhibited the number of mononuclear cells recruitment. The MeOH-H(2)O fraction and its fractionation products (all at 100mg/kg) also presented anti-inflammatory activities, confirmed by the inhibition of cells recruited to the peritoneal cavity. ACE at 100mg/kg did not show any significant reduction of the edema in the mice paw injected with carrageenan. These data together suggest that Dasyphyllum brasiliensis presents significant anti-inflammatory activity, thus supporting the popular use of the tea in the treatment of inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Asteraceae , Histoplasma , Peritonitis/drug therapy , beta-Glucans , Acute Disease , Animals , Brazil , Dose-Response Relationship, Drug , Eosinophils/metabolism , Female , Medicine, Traditional , Mice , Monocytes/metabolism , Neutrophils/metabolism , Peritonitis/chemically induced , Peritonitis/immunology , Phytotherapy , Plant Components, Aerial , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL