Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 114(2): 325-337, 2023 04.
Article in English | MEDLINE | ID: mdl-36752686

ABSTRACT

The proper development of male and female gametophytes is critical for successful sexual reproduction and requires a carefully regulated series of events orchestrated by a suite of various proteins. RUVBL1 and RUVBL2, plant orthologues of human Pontin and Reptin, respectively, belong to the evolutionarily highly conserved AAA+ family linked to a wide range of cellular processes. Previously, we found that RUVBL1 and RUVBL2A mutations are homozygous lethal in Arabidopsis. Here, we report that RUVBL1 and RUVBL2A play roles in reproductive development. We show that mutant plants produce embryo sacs with an abnormal structure or with various numbers of nuclei. Although pollen grains of heterozygous mutant plants exhibit reduced viability and reduced pollen tube growth in vitro, some of the ruvbl pollen tubes are capable of targeting ovules in vivo. Similarly, some ruvbl ovules retain the ability to attract wild-type pollen tubes but fail to develop further. The activity of the RUVBL1 and RUVBL2A promoters was observed in the embryo sac, pollen grains, and tapetum cells and, for RUVBL2A, also in developing ovules. In summary, we show that the RUVBL proteins are essential for the proper development of both male and particularly female gametophytes in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Germ Cells, Plant/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Pollen , Reproduction , Pollen Tube/genetics , Pollen Tube/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism
2.
J Hazard Mater ; 445: 130527, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36495640

ABSTRACT

Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.


Subject(s)
Arabidopsis , Phytochelatins , Cadmium/toxicity , Nicotiana , Sulfates/pharmacology , Glucosinolates/pharmacology , Nutrients , Dietary Supplements , Plant Roots
3.
Int J Mol Sci ; 20(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615119

ABSTRACT

A high degree of developmental plasticity enables plants to adapt to continuous, often unfavorable and unpredictable changes in their environment. At the molecular level, adaptive advantages for plants are primarily provided by epigenetic machinery including DNA methylation, histone modifications, and the activity of noncoding RNA molecules. Using a mass spectrometry-based proteomic approach, we examined the levels of acetylated histone peptide forms in Arabidopsis plants with a loss of function of histone deacetylase 6 (HDA6), and in plants germinated in the presence of HDA inhibitors trichostatin A (TSA) and sodium butyrate (NaB). Our analyses revealed particular lysine sites at histone sequences targeted by the HDA6 enzyme, and by TSA- and NaB-sensitive HDAs. Compared with plants exposed to drugs, more dramatic changes in the overall profiles of histone post-translational modifications were identified in hda6 mutants. However, loss of HDA6 was not sufficient by itself to induce hyperacetylation to the maximum degree, implying complementary activities of other HDAs. In contrast to hda6 mutants that did not exhibit any obvious phenotypic defects, the phenotypes of seedlings exposed to HDA inhibitors were markedly affected, showing that the effect of these drugs on early plant development is not limited to the modulation of histone acetylation levels.


Subject(s)
Arabidopsis Proteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Plant Development/genetics , Proteomics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/antagonists & inhibitors , Butyric Acid/pharmacology , DNA Methylation/drug effects , Gene Expression Regulation, Plant , Gene Silencing , Germination/genetics , Histone Code/drug effects , Histone Code/genetics , Hydroxamic Acids/pharmacology , Plant Development/drug effects , Seedlings/drug effects , Seedlings/genetics
SELECTION OF CITATIONS
SEARCH DETAIL