Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Ethnopharmacol ; 322: 117593, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38113987

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) ranks among the deadliest pulmonary diseases, significantly impacting mortality and morbidity. Presently, the primary treatment for ALI involves supportive therapy; however, its efficacy remains unsatisfactory. Strictosamide (STR), an indole alkaloid found in the Chinese herbal medicine Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Wutan), has been found to exhibit numerous pharmacological properties, particularly anti-inflammatory effects. AIM OF THE STUDY: This study aimes to systematically identify and validate the specific binding proteins targeted by STR and elucidate its anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced ALI. MATERIALS AND METHODS: Biotin chemical modification, protein microarray analysis and network pharmacology were conducted to screen for potential STR-binding proteins. The binding affinity was assessed through surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and molecular docking, and the anti-inflammatory mechanism of STR in ALI treatment was assessed through in vivo and in vitro experiments. RESULTS: Biotin chemical modification, protein microarray and network pharmacology identified extracellular-signal-regulated kinase 2 (ERK2) as the most important binding proteins among 276 candidate STR-interacting proteins and nuclear factor-kappaB (NF-κB) pathway was one of the main inflammatory signal transduction pathways. Using SPR, CETSA, and molecular docking, we confirmed STR's affinity for ERK2. In vitro and in vivo experiments demonstrated that STR mitigated inflammation by targeting ERK2 to modulate the NF-κB signaling pathway in LPS-induced ALI. CONCLUSIONS: Our findings indicate that STR can inhibit the NF-κB signaling pathway to attenuate LPS-induced inflammation by targeting ERK2 and decreasing phosphorylation of ERK2, which could be a novel strategy for treating ALI.


Subject(s)
Acute Lung Injury , NF-kappa B , Vinca Alkaloids , Humans , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Biotin/metabolism , Biotin/pharmacology , Biotin/therapeutic use , Molecular Docking Simulation , Signal Transduction , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Lung/metabolism
2.
Front Pharmacol ; 12: 746786, 2021.
Article in English | MEDLINE | ID: mdl-34970139

ABSTRACT

Rheumatoid arthritis (RA) is characterized by an impaired articular bone immune microenvironment, which is associated with regulatory T cells (Tregs) hypofunction and osteoclasts (OCs) hyperfunction and leads to articular bone erosion and systemic bone loss. Studies have shown that Tregs slow bone loss in RA by regulating the bone resorption function of OCs and the JAK/STAT signaling pathway can regulate the immunosuppressive function of Tregs and reduce the bone erosion function of OCs. Yi Shen Juan Bi Pill (YSJB) is a classic Chinese herbal compound for the treatment of RA. However, whether YSJB regulates bone immune microenvironment homeostasis through JAK/STAT signaling pathway remains unclear. Based on in vitro OC single culture, Treg single culture and OC-Treg coculture systems, treatments were performed using drug-containing serum, AG490 and JAK2 siRNA to explore whether YSJB-containing serum regulates the homeostasis of the bone immune microenvironment through the JAK/STAT signaling pathway. In vitro, YSJB treatment decreased the number of TRAP+ cells and the areas of bone resorption and inhibited the expression of RANK, NFATc1, c-fos, JAK2, and STAT3 in both the OC single culture system and the OC-Treg coculture system. Tregs further reduced the number of TRAP+ cells and the areas of bone resorption in the coculture system. YSJB promoted the secretion of IL-10 while inhibiting the expression of JAK2 and STAT3 in Tregs. Moreover, inhibiting the expression of JAK2 with the JAK2 inhibitor AG490 and JAK2 siRNA improved the immunosuppressive functions of Treg, inhibited OC differentiation and bone resorption. Our study demonstrates that YSJB can regulate OC-mediated bone resorption and Treg-mediated bone immunity through the JAK2/STAT3 signaling pathway. This study provides a new strategy for regulating the bone immune microenvironment in RA with traditional Chinese medicine.

3.
Front Pharmacol ; 11: 228, 2020.
Article in English | MEDLINE | ID: mdl-32218732

ABSTRACT

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by chronic synovitis, bone erosion, and bone loss. Erzhi Pill (EZP), a classic Chinese patent medicine, is often used to treat osteoporosis and shows a capacity for bone metabolism regulation. Methotrexate (MTX), an essential drug for RA treatment, has been reported to inhibit generalized bone loss in RA patients. However, the combined therapeutic effects and mechanism of EZP and MTX in RA have not been fully elucidated. The aim of this study was to investigate the synergistic effect of EZP and MTX on RA and to explore the underlying mechanism through network pharmacological prediction and experimental verification. Chemical compounds of EZP, human target proteins of EZP and MTX, and RA-related human genes were identified in the Encyclopedia of Traditional Chinese Medicine database, PubChem database, and NCBI database, respectively. The molecular network of EZP and MTX in RA was generated and analyzed with Ingenuity Pathway Analysis software according to the datasets. Then, MTX monotherapy, EZP monotherapy, and combined MTX and EZP therapy were administered to collagen-induced arthritis rats, followed by assessment of pathological score, bone damage, bone alkaline phosphatases (BALP), and tartrate-resistant acid phosphatase (TRACP), and of gene levels related to the Wnt1/LRP5/ß-catenin pathway according to network pharmacological analysis. Finally, serum samples from MTX-, EZP- and MTX+EZP-treated rats were used to treat the rat osteoblast (OB)-like UMR-106 cell line to evaluate gene levels related to Wnt1/LRP5/ß-catenin. Network pharmacological analysis showed that the Wnt/ß-catenin signaling pathway was the top signaling pathway shared among MTX, EZP, and RA. The results from in vivo experiments indicated that EZP combined with MTX reduced arthritis severity, alleviated ankle bone damage, increased BALP and decreased TRACP serum levels, and regulated the mRNA expression of Wnt1, LRP5, ß-catenin, Runx2, BALP, and BGP in the ankles. In vitro experiments showed that EZP combined with MTX could also improve the expression of genes related to the Wnt1/LRP5/ß-catenin pathway. This study demonstrated that EZP in combination with MTX played a synergistic role in regulating OBs in RA, which was connected to the modulatory effect of EZP and MTX on the Wnt1/LRP5/ß-catenin signaling pathway.

4.
Molecules ; 24(17)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461974

ABSTRACT

Within non-communicable diseases, chronic inflammatory conditions represent one of the biggest challenges for modern medicine. Traditional Chinese Medicine (TCM) has been practiced over centuries and has accumulated tremendous empirical knowledge on the treatment of such diseases. Huangqi Jianzhong Tang (HQJZT) is a famous TCM herbal formula composed of Radix Astragali, Ramulus Cinnamomi, Radix et Rhizoma Glycyrrhizae Praeparata cum Melle, Radix Paeoniae Alba, Rhizoma Zingiberis Recens, Fructus Jujubae and Saccharum Granorum (maltose), which has been used for the treatment of various chronic inflammatory gastrointestinal diseases. However, there is insufficient knowledge about its active constituents and the mechanisms responsible for its effects. The present study aimed at identifying constituents contributing to the bioactivity of HQJZT by combining in vitro cytokine production assays and LC-MS metabolomics techniques. From the HQJZT decoction as well as from its single herbal components, extracts of different polarities were prepared. Phytochemical composition of the extracts was analyzed by means of UPLC-QTOF-MS/MS. The inhibitory effects of the extracts on TNF-α, IL-1ß and IFN-γ production were studied in U937 cells. Phytochemical and pharmacological bioactivity data were correlated by orthogonal projection to latent structures discriminant analysis (OPLS-DA) in order to identify those HQJZT constituents which may be relevant for the observed pharmacological activities. The investigations resulted in the identification of 16 HQJZT constituents, which are likely to contribute to the activities observed in U937 cells. Seven of them, namely calycosin, formononetin, astragaloside I, liquiritigenin, 18ß-glycyrrhetinic acid, paeoniflorin and albiflorin were unambiguously identified. The predicted results were verified by testing these compounds in the same pharmacological assays as for the extracts. In conclusion, the anti-inflammatory activity of HQJZT could be substantiated by in vitro pharmacological screening, and the predicted activities of the OPLS-DA hits could be partially verified. Moreover, the benefits and limitations of MVDA for prediction pharmacologically active compounds contributing to the activity of a TCM mixture could be detected.


Subject(s)
Anti-Inflammatory Agents/chemistry , Cytokines/metabolism , Drugs, Chinese Herbal/chemistry , Lipopolysaccharides/adverse effects , Metabolomics/methods , Anti-Inflammatory Agents/pharmacology , Chromatography, Liquid , Cytokines/drug effects , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Humans , Interferon-gamma/metabolism , Interleukin-1beta/metabolism , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha/metabolism , U937 Cells
5.
Chin J Integr Med ; 25(12): 939-947, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29943236

ABSTRACT

OBJECTIVE: To explore the molecular-level mechanism on the hematopoiesis effect of Angelicae sinensis Radix (ASR) with systems-based interactome analysis. METHODS: This systems-based interactome analysis was designed to enforce the workflow of "ASR (herb)→compound→target protein→internal protein actions→ending regulated protein for hematopoiesis". This workflow was deployed with restrictions on regulated proteins expresses in bone marrow and anemia disease and futher validated with experiments. RESULTS: The hematopoiesis mechanism of ASR might be accomplished through regulating pathways of cell proliferation towards hemopoiesis with cross-talking agents of spleen tyrosine kinase (SYK), Janus kinase 2 (JAK2), and interleukin-2-inducible T-cell kinase (ITK). The hematopoietic function of ASR was also validated by colony-forming assay performed on mice bone marrow cells. As a result, SYK, JAK2 and ITK were activated. CONCLUSION: This study provides a new approach to systematically study and predict the therapeutic mechanism for ASR based on interactome analysis towards biological process with experimental validations.


Subject(s)
Angelica sinensis/chemistry , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Hematopoiesis/drug effects , Plant Roots/chemistry , Animals , Bone Marrow/drug effects , Janus Kinase 2/metabolism , Mice , Mice, Inbred BALB C , Protein-Tyrosine Kinases/metabolism , Syk Kinase/metabolism
6.
J Tradit Chin Med ; 39(4): 492-501, 2019 08.
Article in English | MEDLINE | ID: mdl-32186096

ABSTRACT

OBJECTIVE: To investigate the effect of osthole on isolated thoracic aortic rings, and to determine the potential mechanism of action. METHODS: Thoracic aortas were isolated from Wistar rats, and were suspended in tissue organ chambers for vascular tension measurement. The effect of cumulative osthole (10-?, 10-?, 10-?, 10-?, and 10-? mol/L) on endothelium-intact and endothelium-denuded thoracic aortic rings pre-contracted with phenylephrine (PE, 10-? mol/L) or KCl (6 × 10-? mol/L) was recorded. Histomorphological changes of thoracic aorta were analyzed by hematoxylin-eosin. The effects of different osthole concentrations on endothelium-intact aortic rings, which were pre-inhibited with the non-selective nitric oxide synthase inhibitor L-Arg(NO2)-OMe·HCl (3 × 10-4 mol/L), endothelium-derived nitric oxide synthase inhibitor Nω-nitro-L-arginine (3 × 10-4 mol/L), guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-α] quinoxaline-1-one (10-5 mol/L), cyclooxygenase inhibitor indometacin (10-5 mol/L), and the Ca2+-activated potassium channel inhibitor tetraethylammonium nitrate (10-5 mol/L), and then contracted with PE, were examined. Aortic rings incubated with osthole (10-5 mol/L), phentolamine (10-5 mol/L), or verapamil (10-5 mol/L) in Ca2+-free Krebs-Henseleit solution (KHS) were stimulated with PE or KCl. RESULTS: There was a dose-dependent increase in vasorelaxation of isolated thoracic aortic rings (both with and without endothelium) with increasing osthole concentration. Hematoxylin-eosin staining showed that osthole significantly improved thoracic aorta ring morphology. Compared with the control group, there were also significant differences after incubation with L-Arg(NO2)-OMe·HCl, Nω-nitro-L-arginine, and 1H-[1,2,4] oxadiazolo [4,3-α] quinoxaline-1-one (P < 0.05 for all). The relaxation rate of the rings in the osthole group incubated with indometacin and tetraethylammonium nitrate were similar to controls. In Ca2+-free KHS, the PE-induced contraction was similar between the osthole (4.37% ± 0.41%) and control (4.21% ± 1.33%) groups. However, after cumulative CaCl2 (0.5, 1, 1.5, 2, 2.5, and 3 mmol/L), the Ca2+-induced contraction was significantly inhibited in the osthole and phentolamine groups compared with controls (P < 0.05). After cumulative CaCl2 was added to Ca2+-free KHS (high K+ concentration), the contraction rate was significantly higher than both of the control and the osthole groups (P < 0.05). The contraction rate in the osthole group was higher than the verapamil group (P < 0.05). CONCLUSION: Osthole has a vasorelaxant effect on isolated rat thoracic aortic rings, via inhibition of both receptor-operated and voltage-dependent Ca2+ channels in arterial smooth muscle, leading to decreased Ca2+ influx, and via inhibition of nitric oxide release on arterial endothelial cells.


Subject(s)
Aorta, Thoracic/drug effects , Coumarins/pharmacology , Drugs, Chinese Herbal/pharmacology , Vasodilator Agents/pharmacology , Angelica/chemistry , Animals , Aorta, Thoracic/physiology , Calcium/metabolism , Endothelial Cells/drug effects , In Vitro Techniques , Male , Rats , Rats, Wistar , Vasodilation/drug effects
7.
Article in English | MEDLINE | ID: mdl-30538762

ABSTRACT

The potential toxicity of herbal drugs, particularly drug-induced liver injury (DILI), has received extensive attention as the use of Chinese herbal medicine has rapidly increased globally. As a classic Chinese patent medicine, Zhuang Gu Guan Jie Wan (ZGGJW) has been brought into focus recently because of its satisfactory therapeutic effects on osteoarthritis (OA) as well as its unanticipated side effects. This study aimed to decipher the puzzling phenomenon of liver injury developing in response to ZGGJW that varies by the subtype of OA. Normal, anterior cruciate ligament transaction (ACLT) and partial medial meniscectomy (MMx) induced OA and ovariectomy combined with ACLT and partial MMx induced rat models were used and treated orally with ZGGJW or distilled water for 30 days. The results from histopathology, biochemistry, and immunohistochemistry showed that ZGGJW induced liver injury, increased the level of malondialdehyde (MDA), and decreased the levels of total antioxidation capability (T-AOC), superoxide dismutase (SOD), interleukin-22 (IL-22), and signal transducer and activator of transcription factor 3 (STAT3) in the liver of normal rats, while liver injury was alleviated and showed different tendencies in the above markers for ACLT and partial MMx induction rats and ovariectomy combined with ACLT and partial MMx induction rats after ZGGJW treatment. In the OA disease states, hepatic injury induced by ZGGJW could be associated with an impairment in antioxidant capacity and the high levels of IL-22 and STAT3 after ZGGJW treatment may be responsible for the slight hepatic injury of ZGGJW based on the subtype of OA. This study provides a novel approach to better understanding of the risks and limitations when using potentially toxic Chinese patent medicine in clinical applications.

8.
Front Pharmacol ; 9: 1237, 2018.
Article in English | MEDLINE | ID: mdl-30429789

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating inflammatory cells and demyelinating lesions, and T helper (Th) cells play critical roles in the pathogenesis of MS. There is still lack of effective treatments currently. Pien Tze Huang (PZH), a traditional Chinese medicine formula, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. However, whether PZH can be used to treat MS is still obscure. This study aimed to investigate the possible therapeutic effect and the underlying action mechanism of PZH in relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mice. Female SJL/J mice were immunized with myelin proteolipid protein 139-151 (PLP139-151) and pertussis toxin to establish RR-EAE model. Mice were then randomly divided into normal group, model group, PZH group and positive control group (fingolimod, FTY-720), and drugs were orally administered for 60 days from the day 10 after immunization. Sera of mice were collected for ELISA detection. Tissues of CNS were harvested for hematoxylin-eosin (H-E) and luxol fast blue (LFB) staining. Furthermore, Th1, Th17 cells and their related cytokines in the CNS were detected by flow cytometry and quantitative real-time PCR, respectively. Proteins involved in STAT and NF-κB signaling pathways were detected by western blot. The results showed that PZH-treated mice displayed mild or moderate clinical symptoms compared with untreated EAE mice that exhibited severe clinical symptoms. PZH remarkably reduced inflammatory cell infiltration and myelin damage in the CNS of EAE mice. It markedly down-regulated the levels of IFN-γ and IL-17A in sera of EAE mice. Moreover, PZH could reduce the percentages of Th1 and Th17 cells. It also suppressed the production of transcription factors ROR-γt and T-bet as well as the mRNA levels of their downstream pro-inflammatory cytokines, such as IFN-γ and IL-17A. Furthermore, PZH could inhibit the phosphorylation of some key proteins in the STAT and NF-κB signaling pathways. In conclusion, the study demonstrated that PZH had a therapeutic effect on RR-EAE mice, which was associated with the modulation effect on Th1 and Th17 cells.

9.
J Immunol Res ; 2018: 8474867, 2018.
Article in English | MEDLINE | ID: mdl-30003114

ABSTRACT

Rheumatoid arthritis (RA) is a type of chronic systemic inflammatory disease; it has a very complicated pathogenesis, and multiple pathological changes are implicated. Traditional Chinese medicine (TCM) like Tripterygium wilfordii Hook. F. or Sinomenium acutum (Thunb.) Rehd et Wils. has been extensively used for centuries in the treatment of arthritic diseases and been reported effective for relieving the severity of RA. Hei-Gu-Teng Zhuifenghuoluo granule (HGT) which contains Periploca forrestii Schltr., Sinomenium acutum (Thunb.) Rehd et Wils., and Lysimachia paridiformis Franch. var. stenophylla Franch. was a representative natural rattan herb formula for the treatment of RA in China, but the mechanism has not been elucidated. This study aimed at exploring the mechanism of HGT on RA using the bioinformatics analysis with in vivo and in vitro experiment validation. The potential action mechanism was first investigated by bioinformatics analysis via Ingenuity Pathway Analysis (IPA) software. After that, we use experimental validation such as collagen-induced arthritis (CIA) mice model in vivo and U937 cell model in vitro. The bioinformatics results suggested that HGT may have anti-inflammatory characteristic on RA and IL-12 signaling pathway could be the potential key trigger. In vivo experiments demonstrated that HGT ameliorated the symptoms in CIA mice and decreased the production of inflammatory cytokines in both mice ankle joints and serum. Furthermore, HGT effectively inhibited the activation of IL-12R and STAT4 on IL-12 signaling pathway. In vitro experiments showed that HGT inhibited the production of IL-12R and STAT4 induced by IL-12 in lipopolysaccharide- (LPS-) stimulated U937 cells. Moreover, IL-12R knockdown was able to interfere with the inhibition effects of HGT on the production of these cytokines. Our results confirmed the anti-inflammatory property of HGT, which was attributed to its inhibition on IL-12 signaling pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/pharmacology , Interleukin-12/metabolism , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Humans , Male , Mice , Mice, Inbred DBA , Periploca/chemistry , Primulaceae/chemistry , Random Allocation , Receptors, Interleukin-12/metabolism , STAT4 Transcription Factor/metabolism , Signal Transduction/drug effects , Sinomenium/chemistry , U937 Cells
10.
J Immunol Res ; 2018: 2952471, 2018.
Article in English | MEDLINE | ID: mdl-29682587

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). There is still lack of commercially viable treatment currently. Pien Tze Huang (PZH), a traditional Chinese medicine, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. This study investigated the possible therapeutic effects of PZH on experimental autoimmune encephalomyelitis (EAE) rats, a classic animal model of MS. Male Lewis rats were immunized with myelin basic protein (MBP) peptide to establish an EAE model and then treated with three doses of PZH. Clinical symptoms, organ coefficient, histopathological features, levels of proinflammatory cytokines, and chemokines as well as MBP and Olig2 were analyzed. The results indicated that PZH ameliorated the clinical severity of EAE rats. It also remarkably reduced inflammatory cell infiltration in the CNS of EAE rats. Furthermore, the levels of IL-17A, IL-23, CCL3, and CCL5 in serum and the CNS were significantly decreased; the p-P65 and p-STAT3 levels were also downregulated in the CNS, while MBP and Olig2 in the CNS of EAE rats had a distinct improvement after PZH treatment. In addition, PZH has no obvious toxicity at the concentration of 0.486 g/kg/d. This study demonstrated that PZH could be used to treat MS.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Brain/immunology , Drugs, Chinese Herbal/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/therapy , Multiple Sclerosis/therapy , Animals , Cell Movement , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Male , Medicine, Chinese Traditional , Myelin Basic Protein/immunology , Neoplasm Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Rats , Rats, Inbred Lew , STAT3 Transcription Factor/metabolism
11.
Int J Mol Sci ; 19(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29373547

ABSTRACT

Triptolide (TP), a major extract of the herb Tripterygium wilfordii Hook F (TWHF), has been shown to exert potent pharmacological effects, especially an immunosuppressive effect in the treatment of rheumatoid arthritis (RA). However, its multiorgan toxicity prevents it from being widely used in clinical practice. Recently, several attempts are being performed to reduce TP toxicity. In this review, recent progress in the use of TP for RA, including its pharmacological effects and toxicity, is summarized. Meanwhile, strategies relying on chemical structural modifications, innovative delivery systems, and drug combinations to alleviate the disadvantages of TP are also reviewed. Furthermore, we also discuss the challenges and perspectives in their clinical translation.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Diterpenes/therapeutic use , Phenanthrenes/therapeutic use , Animals , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/adverse effects , Diterpenes/administration & dosage , Diterpenes/adverse effects , Drug Evaluation, Preclinical , Epoxy Compounds/administration & dosage , Epoxy Compounds/adverse effects , Epoxy Compounds/therapeutic use , Humans , Phenanthrenes/administration & dosage , Phenanthrenes/adverse effects
12.
J Immunol Res ; 2017: 9152960, 2017.
Article in English | MEDLINE | ID: mdl-29230425

ABSTRACT

Cervical spondylotic radiculopathy (CSR) is the most general form of spinal degenerative disease and is characterized by pain and numbness of the neck and arm. Gentongping (GTP) granule, as a classical Chinese patent medicine, has been widely used in curing CSR, whereas the underlying mechanism remains unclear. Therefore, the aim of this study is to explore the pharmacological mechanisms of GTP on CSR. The rat model of CSR was induced by spinal cord injury (SCI). Our results showed that GTP could significantly alleviate spontaneous pain as well as ameliorate gait. The HE staining and Western blot results showed that GTP could increase the quantity of motoneuron and enhance the activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) in the spinal cord tissues. Meanwhile, immunofluorescence staining analysis indicated that GTP could reduce the expression of TNF-α in the spinal cord tissues. Furthermore, the protein level of Bax was decreased whereas the protein levels of Bcl-2 and NF200 were increased after the GTP treatment. These findings demonstrated that GTP might modulate the PPAR-γ pathway by inhibiting the inflammatory response and apoptosis as well as by protecting the cytoskeletal integrity of the spinal cord, ultimately play a neuroprotective role in CSR.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Motor Neurons/pathology , PPAR gamma/metabolism , Radiculopathy/drug therapy , Spondylosis/drug therapy , Animals , Disease Models, Animal , Humans , Male , Molecular Targeted Therapy , Motor Neurons/drug effects , Neuroprotection , Rats , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord/surgery
13.
J Pharm Biomed Anal ; 145: 219-229, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28667937

ABSTRACT

Yu Ping Feng San (YPFS) is a classical TCM formulation which has been traditionally used for treatment of immune system related diseases such as chronic bronchitis, allergic rhinitis and asthma. The formula is a mixture of Radix Saposhnikoviae (Fangfeng), Radix Astragali (Huangqi), and Rhizoma Atractylodis macrocephalae (Baizhu). TLC- and LC-DAD-ESI-MS/MS methods have been developed for the analysis of the metabolic profiles of the single herbs and of the formula. Decoctions and ASE extracts were analyzed in order to trace components of the individual herbs in YPFS. Nine constituents of Radix Saposhnikoviae, ten constituents of Radix Astragali and five constituents of Rhizoma Atractylodis macrocephalae have been assigned in the chemical profiles of the formula, which now allow the standardisation of YPFS. The pharmacological testing showed that all extracts significantly inhibited expression of TNF-α, IFN-γ, and IL-1ß in U937 cells, while the inhibition of IL-4 was consistently low. Compared to conventional analyses which are focused on a limited set of compounds, metabolomics approaches, together with novel data processing tools, enable a more holistic comparison of the herbal extracts. In order to identify the constituents which are relevant for the immunomodulatory effects of the formula, metabolomics studies (PCA, OPLS-DA) have been performed using UPLC/QTOF MS data.


Subject(s)
Drugs, Chinese Herbal , Humans , Interferon-gamma , Interleukin-1beta , Interleukin-4 , Medicine, Chinese Traditional , Tandem Mass Spectrometry , Tumor Necrosis Factor-alpha , U937 Cells
14.
Front Pharmacol ; 8: 944, 2017.
Article in English | MEDLINE | ID: mdl-29311942

ABSTRACT

Yupingfeng San (YPFS) is a representative Traditional Chinese Medicine (TCM) formula with accepted therapeutic effect on Asthma. However, its action mechanism is still obscure. In this study, we used network pharmacology to explore potential mechanism of YPFS on asthma. Nucleotide-binding oligomerization domain (NOD)-like receptor pathway was shown to be the top one shared signaling pathway associated with both YPFS and asthma. In addition, NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome was treated as target protein in the process of YPFS regulating asthma. Further, experimental validation was done by using LPS-stimulated U937 cells and ovalbumin (OVA)-sensitized BALB/c mice model. In vitro experiments showed that YPFS significantly decreased the production of TNF-α and IL-6, as well as both mRNA and protein levels of IL-1ß, NLRP3, Caspase-1 and ASC in LPS-stimulated U937 cells. In vivo experiment indicated that YPFS treatment not only attenuated the clinical symptoms, but also reduced inflammatory cell infiltration, mucus secretion and MUC5AC production in lung tissue of asthmatic mice. Moreover, YPFS treatment remarkably decreased the mRNA and protein levels of IL-1ß, NLRP3, Caspase-1 and ASC in lung tissue of asthmatic mice. In conclusion, these results demonstrated that YPFS could inhibit NLRP3 inflammasome components to attenuate the inflammatory response in asthma.

15.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1916-1920, 2016 May.
Article in Chinese | MEDLINE | ID: mdl-28895343

ABSTRACT

To explore the pharmacological mechanism of glycyrrhizin with series methods of systems pharmacology, main diseases related to glycyrrhizin were obtained by text mining tool; and the target proteins of glycyrrhizin were obtained via the database of Polysearch and PubChem. Then, the target proteins interaction network of glycyrrhizin was built using the software called Cytoscape. Next, the protein groups related to glycyrrhizin were analyzed by using Gene Ontology (GO) tool, and the action pathway of its target proteins was analyzed by using enrichment method. Text mining results showed that the related diseases of glycyrrhizin included chronic hepatitis C, chronic hepatitis, hepatitis, HIV virus, liver cancer and so on. Gene ontology analysis indicated that glycyrrhizin played a role mainly through modification of proteins and chromatin. The signaling pathway enrichment results showed that the main action proteins of glycyrrhizin were related to MAPK signaling pathway, toll-like receptor signaling pathway, neurotrophic factor signaling pathway, cancer and apoptosis pathways. So we can conclude that glycyrrhizin may exert its biological functions primarily by regulating multiple pathways such as MAPK signaling pathway and Toll-like receptors signaling pathway. The pharmacological action of a drug can be rapidly and comprehensively analyzed by the ways of systems pharmacology.


Subject(s)
Glycyrrhizic Acid/pharmacology , Protein Interaction Maps , Signal Transduction/drug effects , Data Mining , Gene Ontology , Humans , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL