Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 446: 138286, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38428073

ABSTRACT

We successfully designed curcumin (Cur)-loaded composite nanoparticles consisting of high-hydrostatic-pressure-treated (HHP-treated) zein and pectin with a pressure of 150 MPa (zein-150 MPa-P-Cur), showing nano-spherical structure with high zeta-potential (-36.72 ± 1.14 mV) and encapsulation efficiency (95.64 ± 1.23 %). We investigated the interaction mechanism of the components in zein-150 MPa-P-Cur using fluorescence spectroscopy, molecular dynamics simulation, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. Compared with zein-P-Cur, the binding sites and binding energy (-53.68 kcal/mol vs. - 44.22 kcal/mol) of HHP-treated zein and Cur were increased. Meanwhile, the interaction force among HHP-treated zein, pectin, and Cur was significantly enhanced, which formed a tighter and more stable particle structure to further improve package performance. Additionally, Cur showed the best chemical stability in zein-150 MPa-P-Cur. And the bioavailability of Cur was increased to 65.53 ± 1.70 %. Collectively, composite nanoparticles based on HHP-treated zein and pectin could be used as a promising Cur delivery system.


Subject(s)
Curcumin , Nanoparticles , Zein , Pectins/chemistry , Curcumin/chemistry , Zein/chemistry , Nanoparticles/chemistry , Spectrophotometry, Infrared , Particle Size
2.
Biomed Res Int ; 2019: 6416941, 2019.
Article in English | MEDLINE | ID: mdl-31309110

ABSTRACT

Iron deficiency anemia has been a widespread disease. As an effective and stable iron supplement, the physiochemical properties of the polysaccharide iron complex have been widely studied. In this study, we characterized a novel polysaccharide-iron(III) complex extracted in an edible fungal species Auricularia auricular (AAPS-iron(III)). The highest iron content (28.40%) in the AAPS-iron(III) complex was obtained under the optimized preparation conditions including an AAPS to FeCl3∙ 6H2O ratio of 2:3 (w/w), a pH value of 8.0 in solution, a reaction temperature of 50°C, and a reaction time of 3 h. The physical and chemical properties of the AAPS-iron(III) complex were characterized by qualitative and quantitative analyses using scanning electron microscope, particle size distribution, thermogravimetric analyzer, Fourier transform infrared spectroscopy, circular dichroism, and 1H nuclear magnetic resonance. Result showed that, although the iron was bound to the polysaccharide, it was released under artificial gastrointestinal conditions. The AAPS-iron(III) complex exhibited high stability (under 50-256°C) and water solubility. The AAPS-iron(III) complex also showed high antioxidant activity in vitro, demonstrating an additional health benefit over other typical nonantioxidant iron nutritional supplements. Furthermore, the AAPS-iron(III) complex showed high efficiency on the treatment of the iron deficiency anemia in the model rats. Therefore, the AAPS-iron(III) complex can be used as a nutritional fortifier to supply iron in industrial processing and to assist the treatment of iron deficiency anemia.


Subject(s)
Basidiomycota/chemistry , Fungal Polysaccharides/chemistry , Iron Compounds/chemistry , Iron/chemistry , Anemia, Iron-Deficiency/drug therapy , Animals , Antioxidants/chemistry , Circular Dichroism/methods , Dietary Supplements , Female , Male , Rats , Rats, Wistar , Solubility/drug effects , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL