Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Curr Microbiol ; 80(8): 263, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37382659

ABSTRACT

Bacterial vaginosis (BV) is a common infectious disease of the lower female reproductive tract, which is characterized by the augmentation of anaerobic bacteria. Gardnerella (G.) vaginalis plays a predominant role in BV recurrence relating to its higher virulence potential and biofilm formation ability. With the increased proportion of metronidazole-resistant G. vaginalis, controlling resistance to metronidazole and finding more effective drugs became a major concern. In this study, 30 clinical strains were cultured from the vaginal secretions of BV patients, followed by PCR and 16S rDNA sequencing identification. According to the CLSI guidelines for anaerobic drug sensitivity testing, 19 strains were identified as metronidazole-resistant (minimum inhibitory concentration, MIC ≥ 32 µg/mL), of which 4 clinical strains were observed to be strong biofilm producer and the final minimum biofilm inhibitory concentration (MBIC) of metronidazole was increased to 512 µg/mL. Sophora flavescens Alkaloids (SFAs), a traditional chinese medicine, could not only inhibit the growth of metronidazole-resistant G. vaginalis in planktonic (MIC: 0.3125-1.25 mg/mL), but also eliminate the biofilm formation (MBIC: 0.625-1.25 mg/mL). In the high-magnification scanning electron, it was observed that the morphology of biofilm changed from a thick to flaky shape and was nearly depleted. These results indicate that SFAs could not only inhibit the growth of metronidazole-resistant G. vaginalisin planktonic and biofilm levels, but also destroyed the biofilm morphology and microstructure, which may contribute to the prevention of BV recurrence.


Subject(s)
Alkaloids , Anti-Infective Agents , Vaginosis, Bacterial , Humans , Female , Gardnerella vaginalis , Metronidazole/pharmacology , Sophora flavescens , Alkaloids/pharmacology , Biofilms
2.
Front Pharmacol ; 13: 894149, 2022.
Article in English | MEDLINE | ID: mdl-35924054

ABSTRACT

Background and aims: Pelvic inflammatory disease (PID) is infection-induced inflammation of the female upper reproductive tract that results in high fever, ectopic pregnancy, infertility, and varying degrees of chronic pelvic pain. Recent clinical studies have shown that Kangfuxiaoyanshuan (KFXYS), a Traditional Chinese Medicine (TCM) formulation, may short the course of the disease and reduce the occurrence of PID sequelae, but its pharmacological action and potential mechanism have not been fully elucidated. Here, we aimed to investigate the therapeutic effects and mechanism of KFXYS in rats with PID. Materials and Methods: A PID rat model was constructed through endometrial mechanical injury and pathogen infection. The rectal temperature was measured during the 14-days course of treatment, and the white blood cell (WBC) count in the blood and the levels of cytokines (IFN-γ, IL-1ß, IL-4, TNF-α) in the serum were evaluated by ELISA. Hematoxylin and eosin (HE) staining was performed to analyze pathological changes, and transmission electron microscopy (TEM) was used to observe ultrastructural changes. The p-p65/p65 protein expression was evaluated by western blotting and the levels of MMP-2 and TGF-ß in adhesion tissues were assessed by immunohistochemistry. Results: KFXYS lowered the rectal temperature and the WBC counts in the blood in the acute stage of PID and alleviated inflammatory cell infiltration of the uterus, especially when combined with levofloxacin. KFXYS significantly decreased the levels of proinflammatory cytokines (IFN-γ, IL-1ß, IL-4) and adhesion-related factors (TNF-α) and protected the ultrastructure of endometrial epithelial cells. Mechanistically, KFXYS inhibited the NF-κB activation by decreasing phosphorylation of p65, thus the alleviation of inflammation further reduced the expression of TGF-ß and MMP-2, and inhibited the occurrence of uterine adhesions. Conclusion: These results revealed that KFXYS alleviated pelvic inflammation and effectively inhibits inflammation-associated adhesion, which indicated the potential role of KFXYS for treatment of PID and the prevention of PID sequelae.

3.
Nature ; 599(7884): 256-261, 2021 11.
Article in English | MEDLINE | ID: mdl-34707286

ABSTRACT

The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.


Subject(s)
Archaeology , Genome, Human/genetics , Genomics , Human Migration/history , Mummies/history , Phylogeny , Agriculture/history , Animals , Cattle , China , Cultural Characteristics , Dental Calculus/chemistry , Desert Climate , Diet/history , Europe , Female , Goats , Grassland , History, Ancient , Humans , Male , Milk Proteins/analysis , Phylogeography , Principal Component Analysis , Proteome/analysis , Proteomics , Sheep , Whole Genome Sequencing
4.
Hum Biol ; 91(1): 21-30, 2019 02 17.
Article in English | MEDLINE | ID: mdl-32073242

ABSTRACT

Ancient DNA studies have always refreshed our understanding of the human past that cannot be tracked by modern DNA alone. Until recently, ancient mitochondrial genomic studies in East Asia were still very limited. Here, we retrieved the whole mitochondrial genome of an 8,400-year-old individual from Inner Mongolia, China. Phylogenetic analyses show that the individual belongs to a previously undescribed clade under haplogroup C5d that most probably originated in northern Asia and may have a very low frequency in extant populations that have not yet been sampled. We further characterized the demographic history of mitochondrial haplogroups C5 and C5d and found that C5 experienced a sharp increase in population size starting around 4,000 years before present, the time when intensive millet farming was developed by populations who are associated with the Lower Xiajiadian culture and was widely adopted in northern China. We caution that people related to haplogroup C5 may have added this farming technology to their original way of life and that the various forms of subsistence may have provided abundant food sources and further contributed to the increase in population size.


Subject(s)
Genome, Mitochondrial/genetics , Haplotypes/genetics , DNA, Ancient , DNA, Mitochondrial , Genotyping Techniques , History, Ancient , Humans , Mongolia/epidemiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL